| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wksfval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wksfval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | df-wlks | ⊢ Walks  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝑔 )  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 5 | 4 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  𝐼 ) | 
						
							| 6 | 5 | dmeqd | ⊢ ( 𝑔  =  𝐺  →  dom  ( iEdg ‘ 𝑔 )  =  dom  𝐼 ) | 
						
							| 7 |  | wrdeq | ⊢ ( dom  ( iEdg ‘ 𝑔 )  =  dom  𝐼  →  Word  dom  ( iEdg ‘ 𝑔 )  =  Word  dom  𝐼 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑔  =  𝐺  →  Word  dom  ( iEdg ‘ 𝑔 )  =  Word  dom  𝐼 ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝑔 )  ↔  𝑓  ∈  Word  dom  𝐼 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 | 10 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 12 | 11 | feq3d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 )  ↔  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) ) | 
						
							| 13 | 5 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) }  ↔  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ) ) | 
						
							| 15 | 13 | sseq2d | ⊢ ( 𝑔  =  𝐺  →  ( { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  ↔  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 16 | 14 15 | ifpbi23d | ⊢ ( 𝑔  =  𝐺  →  ( if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) ) )  ↔  if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 18 | 9 12 17 | 3anbi123d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝑔 )  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 19 | 18 | opabbidv | ⊢ ( 𝑔  =  𝐺  →  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝑔 )  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) | 
						
							| 20 |  | elex | ⊢ ( 𝐺  ∈  𝑊  →  𝐺  ∈  V ) | 
						
							| 21 |  | 3anass | ⊢ ( ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  ( 𝑓  ∈  Word  dom  𝐼  ∧  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 22 | 21 | opabbii | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } | 
						
							| 23 | 2 | fvexi | ⊢ 𝐼  ∈  V | 
						
							| 24 | 23 | dmex | ⊢ dom  𝐼  ∈  V | 
						
							| 25 |  | wrdexg | ⊢ ( dom  𝐼  ∈  V  →  Word  dom  𝐼  ∈  V ) | 
						
							| 26 | 24 25 | mp1i | ⊢ ( 𝐺  ∈  𝑊  →  Word  dom  𝐼  ∈  V ) | 
						
							| 27 |  | ovex | ⊢ ( 0 ... ( ♯ ‘ 𝑓 ) )  ∈  V | 
						
							| 28 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑓  ∈  Word  dom  𝐼 )  →  𝑉  ∈  V ) | 
						
							| 30 |  | mapex | ⊢ ( ( ( 0 ... ( ♯ ‘ 𝑓 ) )  ∈  V  ∧  𝑉  ∈  V )  →  { 𝑝  ∣  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 }  ∈  V ) | 
						
							| 31 | 27 29 30 | sylancr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑓  ∈  Word  dom  𝐼 )  →  { 𝑝  ∣  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 }  ∈  V ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  →  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) | 
						
							| 33 | 32 | ss2abi | ⊢ { 𝑝  ∣  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ⊆  { 𝑝  ∣  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 } | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑓  ∈  Word  dom  𝐼 )  →  { 𝑝  ∣  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ⊆  { 𝑝  ∣  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 } ) | 
						
							| 35 | 31 34 | ssexd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑓  ∈  Word  dom  𝐼 )  →  { 𝑝  ∣  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ∈  V ) | 
						
							| 36 | 26 35 | opabex3d | ⊢ ( 𝐺  ∈  𝑊  →  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) }  ∈  V ) | 
						
							| 37 | 22 36 | eqeltrid | ⊢ ( 𝐺  ∈  𝑊  →  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ∈  V ) | 
						
							| 38 | 3 19 20 37 | fvmptd3 | ⊢ ( 𝐺  ∈  𝑊  →  ( Walks ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 )  =  ( 𝑝 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) } ,  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |