Metamath Proof Explorer


Theorem wlksoneq1eq2

Description: Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021)

Ref Expression
Assertion wlksoneq1eq2 FAWalksOnGBPHCWalksOnGDPA=CB=D

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wlkonprop FAWalksOnGBPGVAVtxGBVtxGFVPVFWalksGPP0=APF=B
3 1 wlkonprop HCWalksOnGDPGVCVtxGDVtxGHVPVHWalksGPP0=CPH=D
4 simp2 FWalksGPP0=APF=BP0=A
5 4 eqcomd FWalksGPP0=APF=BA=P0
6 simp2 HWalksGPP0=CPH=DP0=C
7 5 6 sylan9eqr HWalksGPP0=CPH=DFWalksGPP0=APF=BA=C
8 simp3 FWalksGPP0=APF=BPF=B
9 8 eqcomd FWalksGPP0=APF=BB=PF
10 9 adantl HWalksGPP0=CPH=DFWalksGPP0=APF=BB=PF
11 wlklenvm1 HWalksGPH=P1
12 wlklenvm1 FWalksGPF=P1
13 eqtr3 F=P1H=P1F=H
14 13 fveq2d F=P1H=P1PF=PH
15 14 ex F=P1H=P1PF=PH
16 12 15 syl FWalksGPH=P1PF=PH
17 16 3ad2ant1 FWalksGPP0=APF=BH=P1PF=PH
18 17 com12 H=P1FWalksGPP0=APF=BPF=PH
19 11 18 syl HWalksGPFWalksGPP0=APF=BPF=PH
20 19 3ad2ant1 HWalksGPP0=CPH=DFWalksGPP0=APF=BPF=PH
21 20 imp HWalksGPP0=CPH=DFWalksGPP0=APF=BPF=PH
22 simpl3 HWalksGPP0=CPH=DFWalksGPP0=APF=BPH=D
23 10 21 22 3eqtrd HWalksGPP0=CPH=DFWalksGPP0=APF=BB=D
24 7 23 jca HWalksGPP0=CPH=DFWalksGPP0=APF=BA=CB=D
25 24 ex HWalksGPP0=CPH=DFWalksGPP0=APF=BA=CB=D
26 25 3ad2ant3 GVCVtxGDVtxGHVPVHWalksGPP0=CPH=DFWalksGPP0=APF=BA=CB=D
27 26 com12 FWalksGPP0=APF=BGVCVtxGDVtxGHVPVHWalksGPP0=CPH=DA=CB=D
28 27 3ad2ant3 GVAVtxGBVtxGFVPVFWalksGPP0=APF=BGVCVtxGDVtxGHVPVHWalksGPP0=CPH=DA=CB=D
29 28 imp GVAVtxGBVtxGFVPVFWalksGPP0=APF=BGVCVtxGDVtxGHVPVHWalksGPP0=CPH=DA=CB=D
30 2 3 29 syl2an FAWalksOnGBPHCWalksOnGDPA=CB=D