Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wun0.1 | |
|
Assertion | wunr1om | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | |
|
2 | fveq2 | |
|
3 | 2 | eleq1d | |
4 | fveq2 | |
|
5 | 4 | eleq1d | |
6 | fveq2 | |
|
7 | 6 | eleq1d | |
8 | r10 | |
|
9 | 1 | wun0 | |
10 | 8 9 | eqeltrid | |
11 | 1 | adantr | |
12 | simpr | |
|
13 | 11 12 | wunpw | |
14 | nnon | |
|
15 | r1suc | |
|
16 | 14 15 | syl | |
17 | 16 | eleq1d | |
18 | 13 17 | imbitrrid | |
19 | 18 | expd | |
20 | 3 5 7 10 19 | finds2 | |
21 | eleq1 | |
|
22 | 21 | imbi2d | |
23 | 20 22 | syl5ibcom | |
24 | 23 | rexlimiv | |
25 | r1fnon | |
|
26 | fnfun | |
|
27 | 25 26 | ax-mp | |
28 | fvelima | |
|
29 | 27 28 | mpan | |
30 | 24 29 | syl11 | |
31 | 30 | ssrdv | |