| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wun0.1 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
eleq1d |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
r10 |
|
| 9 |
1
|
wun0 |
|
| 10 |
8 9
|
eqeltrid |
|
| 11 |
1
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
wunpw |
|
| 14 |
|
nnon |
|
| 15 |
|
r1suc |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
eleq1d |
|
| 18 |
13 17
|
imbitrrid |
|
| 19 |
18
|
expd |
|
| 20 |
3 5 7 10 19
|
finds2 |
|
| 21 |
|
eleq1 |
|
| 22 |
21
|
imbi2d |
|
| 23 |
20 22
|
syl5ibcom |
|
| 24 |
23
|
rexlimiv |
|
| 25 |
|
r1fnon |
|
| 26 |
|
fnfun |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
|
fvelima |
|
| 29 |
27 28
|
mpan |
|
| 30 |
24 29
|
syl11 |
|
| 31 |
30
|
ssrdv |
|