Metamath Proof Explorer


Theorem wunr1om

Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 φUWUni
Assertion wunr1om φR1ωU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 fveq2 x=R1x=R1
3 2 eleq1d x=R1xUR1U
4 fveq2 x=yR1x=R1y
5 4 eleq1d x=yR1xUR1yU
6 fveq2 x=sucyR1x=R1sucy
7 6 eleq1d x=sucyR1xUR1sucyU
8 r10 R1=
9 1 wun0 φU
10 8 9 eqeltrid φR1U
11 1 adantr φR1yUUWUni
12 simpr φR1yUR1yU
13 11 12 wunpw φR1yU𝒫R1yU
14 nnon yωyOn
15 r1suc yOnR1sucy=𝒫R1y
16 14 15 syl yωR1sucy=𝒫R1y
17 16 eleq1d yωR1sucyU𝒫R1yU
18 13 17 imbitrrid yωφR1yUR1sucyU
19 18 expd yωφR1yUR1sucyU
20 3 5 7 10 19 finds2 xωφR1xU
21 eleq1 R1x=yR1xUyU
22 21 imbi2d R1x=yφR1xUφyU
23 20 22 syl5ibcom xωR1x=yφyU
24 23 rexlimiv xωR1x=yφyU
25 r1fnon R1FnOn
26 fnfun R1FnOnFunR1
27 25 26 ax-mp FunR1
28 fvelima FunR1yR1ωxωR1x=y
29 27 28 mpan yR1ωxωR1x=y
30 24 29 syl11 φyR1ωyU
31 30 ssrdv φR1ωU