Metamath Proof Explorer


Theorem xaddnemnf

Description: Closure of extended real addition in the subset RR* / { -oo } . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddnemnf A * A −∞ B * B −∞ A + 𝑒 B −∞

Proof

Step Hyp Ref Expression
1 xrnemnf A * A −∞ A A = +∞
2 xrnemnf B * B −∞ B B = +∞
3 rexadd A B A + 𝑒 B = A + B
4 readdcl A B A + B
5 3 4 eqeltrd A B A + 𝑒 B
6 5 renemnfd A B A + 𝑒 B −∞
7 oveq2 B = +∞ A + 𝑒 B = A + 𝑒 +∞
8 rexr A A *
9 renemnf A A −∞
10 xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞
11 8 9 10 syl2anc A A + 𝑒 +∞ = +∞
12 7 11 sylan9eqr A B = +∞ A + 𝑒 B = +∞
13 pnfnemnf +∞ −∞
14 13 a1i A B = +∞ +∞ −∞
15 12 14 eqnetrd A B = +∞ A + 𝑒 B −∞
16 6 15 jaodan A B B = +∞ A + 𝑒 B −∞
17 2 16 sylan2b A B * B −∞ A + 𝑒 B −∞
18 oveq1 A = +∞ A + 𝑒 B = +∞ + 𝑒 B
19 xaddpnf2 B * B −∞ +∞ + 𝑒 B = +∞
20 18 19 sylan9eq A = +∞ B * B −∞ A + 𝑒 B = +∞
21 13 a1i A = +∞ B * B −∞ +∞ −∞
22 20 21 eqnetrd A = +∞ B * B −∞ A + 𝑒 B −∞
23 17 22 jaoian A A = +∞ B * B −∞ A + 𝑒 B −∞
24 1 23 sylanb A * A −∞ B * B −∞ A + 𝑒 B −∞