Metamath Proof Explorer


Theorem xkoval

Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoval.x X=R
xkoval.k K=x𝒫X|R𝑡xComp
xkoval.t T=kK,vSfRCnS|fkv
Assertion xkoval RTopSTopS^koR=topGenfiranT

Proof

Step Hyp Ref Expression
1 xkoval.x X=R
2 xkoval.k K=x𝒫X|R𝑡xComp
3 xkoval.t T=kK,vSfRCnS|fkv
4 simpr s=Sr=Rr=R
5 4 unieqd s=Sr=Rr=R
6 5 1 eqtr4di s=Sr=Rr=X
7 6 pweqd s=Sr=R𝒫r=𝒫X
8 4 oveq1d s=Sr=Rr𝑡x=R𝑡x
9 8 eleq1d s=Sr=Rr𝑡xCompR𝑡xComp
10 7 9 rabeqbidv s=Sr=Rx𝒫r|r𝑡xComp=x𝒫X|R𝑡xComp
11 10 2 eqtr4di s=Sr=Rx𝒫r|r𝑡xComp=K
12 simpl s=Sr=Rs=S
13 4 12 oveq12d s=Sr=RrCns=RCnS
14 13 rabeqdv s=Sr=RfrCns|fkv=fRCnS|fkv
15 11 12 14 mpoeq123dv s=Sr=Rkx𝒫r|r𝑡xComp,vsfrCns|fkv=kK,vSfRCnS|fkv
16 15 3 eqtr4di s=Sr=Rkx𝒫r|r𝑡xComp,vsfrCns|fkv=T
17 16 rneqd s=Sr=Rrankx𝒫r|r𝑡xComp,vsfrCns|fkv=ranT
18 17 fveq2d s=Sr=Rfirankx𝒫r|r𝑡xComp,vsfrCns|fkv=firanT
19 18 fveq2d s=Sr=RtopGenfirankx𝒫r|r𝑡xComp,vsfrCns|fkv=topGenfiranT
20 df-xko ^ko=sTop,rToptopGenfirankx𝒫r|r𝑡xComp,vsfrCns|fkv
21 fvex topGenfiranTV
22 19 20 21 ovmpoa STopRTopS^koR=topGenfiranT
23 22 ancoms RTopSTopS^koR=topGenfiranT