Metamath Proof Explorer


Theorem xlimmnf

Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnf.k _ k F
xlimmnf.m φ M
xlimmnf.z Z = M
xlimmnf.f φ F : Z *
Assertion xlimmnf φ F * −∞ x j Z k j F k x

Proof

Step Hyp Ref Expression
1 xlimmnf.k _ k F
2 xlimmnf.m φ M
3 xlimmnf.z Z = M
4 xlimmnf.f φ F : Z *
5 2 3 4 xlimmnfv φ F * −∞ y i Z l i F l y
6 breq2 y = x F l y F l x
7 6 rexralbidv y = x i Z l i F l y i Z l i F l x
8 fveq2 i = j i = j
9 8 raleqdv i = j l i F l x l j F l x
10 nfcv _ k l
11 1 10 nffv _ k F l
12 nfcv _ k
13 nfcv _ k x
14 11 12 13 nfbr k F l x
15 nfv l F k x
16 fveq2 l = k F l = F k
17 16 breq1d l = k F l x F k x
18 14 15 17 cbvralw l j F l x k j F k x
19 9 18 bitrdi i = j l i F l x k j F k x
20 19 cbvrexvw i Z l i F l x j Z k j F k x
21 7 20 bitrdi y = x i Z l i F l y j Z k j F k x
22 21 cbvralvw y i Z l i F l y x j Z k j F k x
23 5 22 bitrdi φ F * −∞ x j Z k j F k x