Metamath Proof Explorer


Theorem xlimmnf

Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnf.k _kF
xlimmnf.m φM
xlimmnf.z Z=M
xlimmnf.f φF:Z*
Assertion xlimmnf φF*−∞xjZkjFkx

Proof

Step Hyp Ref Expression
1 xlimmnf.k _kF
2 xlimmnf.m φM
3 xlimmnf.z Z=M
4 xlimmnf.f φF:Z*
5 2 3 4 xlimmnfv φF*−∞yiZliFly
6 breq2 y=xFlyFlx
7 6 rexralbidv y=xiZliFlyiZliFlx
8 fveq2 i=ji=j
9 8 raleqdv i=jliFlxljFlx
10 nfcv _kl
11 1 10 nffv _kFl
12 nfcv _k
13 nfcv _kx
14 11 12 13 nfbr kFlx
15 nfv lFkx
16 fveq2 l=kFl=Fk
17 16 breq1d l=kFlxFkx
18 14 15 17 cbvralw ljFlxkjFkx
19 9 18 bitrdi i=jliFlxkjFkx
20 19 cbvrexvw iZliFlxjZkjFkx
21 7 20 bitrdi y=xiZliFlyjZkjFkx
22 21 cbvralvw yiZliFlyxjZkjFkx
23 5 22 bitrdi φF*−∞xjZkjFkx