Metamath Proof Explorer


Theorem xmulasslem

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xmulasslem.1 x=DψX=Y
xmulasslem.2 x=DψE=F
xmulasslem.x φX*
xmulasslem.y φY*
xmulasslem.d φD*
xmulasslem.ps φx*0<xψ
xmulasslem.0 φx=0ψ
xmulasslem.e φE=X
xmulasslem.f φF=Y
Assertion xmulasslem φX=Y

Proof

Step Hyp Ref Expression
1 xmulasslem.1 x=DψX=Y
2 xmulasslem.2 x=DψE=F
3 xmulasslem.x φX*
4 xmulasslem.y φY*
5 xmulasslem.d φD*
6 xmulasslem.ps φx*0<xψ
7 xmulasslem.0 φx=0ψ
8 xmulasslem.e φE=X
9 xmulasslem.f φF=Y
10 0xr 0*
11 xrltso <Or*
12 solin <Or*D*0*D<0D=00<D
13 11 12 mpan D*0*D<0D=00<D
14 5 10 13 sylancl φD<0D=00<D
15 xlt0neg1 D*D<00<D
16 5 15 syl φD<00<D
17 xnegcl D*D*
18 5 17 syl φD*
19 breq2 x=D0<x0<D
20 19 2 imbi12d x=D0<xψ0<DE=F
21 20 imbi2d x=Dφ0<xψφ0<DE=F
22 6 exp32 φx*0<xψ
23 22 com12 x*φ0<xψ
24 21 23 vtoclga D*φ0<DE=F
25 18 24 mpcom φ0<DE=F
26 16 25 sylbid φD<0E=F
27 8 9 eqeq12d φE=FX=Y
28 xneg11 X*Y*X=YX=Y
29 3 4 28 syl2anc φX=YX=Y
30 27 29 bitrd φE=FX=Y
31 26 30 sylibd φD<0X=Y
32 eqeq1 x=Dx=0D=0
33 32 1 imbi12d x=Dx=0ψD=0X=Y
34 33 imbi2d x=Dφx=0ψφD=0X=Y
35 34 7 vtoclg D*φD=0X=Y
36 5 35 mpcom φD=0X=Y
37 breq2 x=D0<x0<D
38 37 1 imbi12d x=D0<xψ0<DX=Y
39 38 imbi2d x=Dφ0<xψφ0<DX=Y
40 39 23 vtoclga D*φ0<DX=Y
41 5 40 mpcom φ0<DX=Y
42 31 36 41 3jaod φD<0D=00<DX=Y
43 14 42 mpd φX=Y