Metamath Proof Explorer


Theorem xmulasslem3

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulasslem3 A * 0 < A B * 0 < B C * 0 < C A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 recn C C
4 mulass A B C A B C = A B C
5 1 2 3 4 syl3an A B C A B C = A B C
6 5 3expa A B C A B C = A B C
7 remulcl A B A B
8 rexmul A B C A B 𝑒 C = A B C
9 7 8 sylan A B C A B 𝑒 C = A B C
10 remulcl B C B C
11 rexmul A B C A 𝑒 B C = A B C
12 10 11 sylan2 A B C A 𝑒 B C = A B C
13 12 anassrs A B C A 𝑒 B C = A B C
14 6 9 13 3eqtr4d A B C A B 𝑒 C = A 𝑒 B C
15 rexmul A B A 𝑒 B = A B
16 15 adantr A B C A 𝑒 B = A B
17 16 oveq1d A B C A 𝑒 B 𝑒 C = A B 𝑒 C
18 rexmul B C B 𝑒 C = B C
19 18 adantll A B C B 𝑒 C = B C
20 19 oveq2d A B C A 𝑒 B 𝑒 C = A 𝑒 B C
21 14 17 20 3eqtr4d A B C A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
22 21 adantll A * 0 < A B * 0 < B C * 0 < C A B C A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
23 oveq2 C = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 +∞
24 simp1l A * 0 < A B * 0 < B C * 0 < C A *
25 simp2l A * 0 < A B * 0 < B C * 0 < C B *
26 xmulcl A * B * A 𝑒 B *
27 24 25 26 syl2anc A * 0 < A B * 0 < B C * 0 < C A 𝑒 B *
28 xmulgt0 A * 0 < A B * 0 < B 0 < A 𝑒 B
29 28 3adant3 A * 0 < A B * 0 < B C * 0 < C 0 < A 𝑒 B
30 xmulpnf1 A 𝑒 B * 0 < A 𝑒 B A 𝑒 B 𝑒 +∞ = +∞
31 27 29 30 syl2anc A * 0 < A B * 0 < B C * 0 < C A 𝑒 B 𝑒 +∞ = +∞
32 23 31 sylan9eqr A * 0 < A B * 0 < B C * 0 < C C = +∞ A 𝑒 B 𝑒 C = +∞
33 simpl1 A * 0 < A B * 0 < B C * 0 < C C = +∞ A * 0 < A
34 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
35 33 34 syl A * 0 < A B * 0 < B C * 0 < C C = +∞ A 𝑒 +∞ = +∞
36 32 35 eqtr4d A * 0 < A B * 0 < B C * 0 < C C = +∞ A 𝑒 B 𝑒 C = A 𝑒 +∞
37 oveq2 C = +∞ B 𝑒 C = B 𝑒 +∞
38 xmulpnf1 B * 0 < B B 𝑒 +∞ = +∞
39 38 3ad2ant2 A * 0 < A B * 0 < B C * 0 < C B 𝑒 +∞ = +∞
40 37 39 sylan9eqr A * 0 < A B * 0 < B C * 0 < C C = +∞ B 𝑒 C = +∞
41 40 oveq2d A * 0 < A B * 0 < B C * 0 < C C = +∞ A 𝑒 B 𝑒 C = A 𝑒 +∞
42 36 41 eqtr4d A * 0 < A B * 0 < B C * 0 < C C = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
43 42 adantlr A * 0 < A B * 0 < B C * 0 < C A B C = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
44 simpl3r A * 0 < A B * 0 < B C * 0 < C A B 0 < C
45 xmulasslem2 0 < C C = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
46 44 45 sylan A * 0 < A B * 0 < B C * 0 < C A B C = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
47 simp3l A * 0 < A B * 0 < B C * 0 < C C *
48 elxr C * C C = +∞ C = −∞
49 47 48 sylib A * 0 < A B * 0 < B C * 0 < C C C = +∞ C = −∞
50 49 adantr A * 0 < A B * 0 < B C * 0 < C A B C C = +∞ C = −∞
51 22 43 46 50 mpjao3dan A * 0 < A B * 0 < B C * 0 < C A B A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
52 51 anassrs A * 0 < A B * 0 < B C * 0 < C A B A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
53 xmulpnf2 C * 0 < C +∞ 𝑒 C = +∞
54 53 3ad2ant3 A * 0 < A B * 0 < B C * 0 < C +∞ 𝑒 C = +∞
55 34 3ad2ant1 A * 0 < A B * 0 < B C * 0 < C A 𝑒 +∞ = +∞
56 54 55 eqtr4d A * 0 < A B * 0 < B C * 0 < C +∞ 𝑒 C = A 𝑒 +∞
57 56 adantr A * 0 < A B * 0 < B C * 0 < C B = +∞ +∞ 𝑒 C = A 𝑒 +∞
58 oveq2 B = +∞ A 𝑒 B = A 𝑒 +∞
59 58 55 sylan9eqr A * 0 < A B * 0 < B C * 0 < C B = +∞ A 𝑒 B = +∞
60 59 oveq1d A * 0 < A B * 0 < B C * 0 < C B = +∞ A 𝑒 B 𝑒 C = +∞ 𝑒 C
61 oveq1 B = +∞ B 𝑒 C = +∞ 𝑒 C
62 61 54 sylan9eqr A * 0 < A B * 0 < B C * 0 < C B = +∞ B 𝑒 C = +∞
63 62 oveq2d A * 0 < A B * 0 < B C * 0 < C B = +∞ A 𝑒 B 𝑒 C = A 𝑒 +∞
64 57 60 63 3eqtr4d A * 0 < A B * 0 < B C * 0 < C B = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
65 64 adantlr A * 0 < A B * 0 < B C * 0 < C A B = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
66 simpl2r A * 0 < A B * 0 < B C * 0 < C A 0 < B
67 xmulasslem2 0 < B B = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
68 66 67 sylan A * 0 < A B * 0 < B C * 0 < C A B = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
69 elxr B * B B = +∞ B = −∞
70 25 69 sylib A * 0 < A B * 0 < B C * 0 < C B B = +∞ B = −∞
71 70 adantr A * 0 < A B * 0 < B C * 0 < C A B B = +∞ B = −∞
72 52 65 68 71 mpjao3dan A * 0 < A B * 0 < B C * 0 < C A A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
73 simpl3 A * 0 < A B * 0 < B C * 0 < C A = +∞ C * 0 < C
74 73 53 syl A * 0 < A B * 0 < B C * 0 < C A = +∞ +∞ 𝑒 C = +∞
75 oveq1 A = +∞ A 𝑒 B = +∞ 𝑒 B
76 xmulpnf2 B * 0 < B +∞ 𝑒 B = +∞
77 76 3ad2ant2 A * 0 < A B * 0 < B C * 0 < C +∞ 𝑒 B = +∞
78 75 77 sylan9eqr A * 0 < A B * 0 < B C * 0 < C A = +∞ A 𝑒 B = +∞
79 78 oveq1d A * 0 < A B * 0 < B C * 0 < C A = +∞ A 𝑒 B 𝑒 C = +∞ 𝑒 C
80 oveq1 A = +∞ A 𝑒 B 𝑒 C = +∞ 𝑒 B 𝑒 C
81 xmulcl B * C * B 𝑒 C *
82 25 47 81 syl2anc A * 0 < A B * 0 < B C * 0 < C B 𝑒 C *
83 xmulgt0 B * 0 < B C * 0 < C 0 < B 𝑒 C
84 83 3adant1 A * 0 < A B * 0 < B C * 0 < C 0 < B 𝑒 C
85 xmulpnf2 B 𝑒 C * 0 < B 𝑒 C +∞ 𝑒 B 𝑒 C = +∞
86 82 84 85 syl2anc A * 0 < A B * 0 < B C * 0 < C +∞ 𝑒 B 𝑒 C = +∞
87 80 86 sylan9eqr A * 0 < A B * 0 < B C * 0 < C A = +∞ A 𝑒 B 𝑒 C = +∞
88 74 79 87 3eqtr4d A * 0 < A B * 0 < B C * 0 < C A = +∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
89 simp1r A * 0 < A B * 0 < B C * 0 < C 0 < A
90 xmulasslem2 0 < A A = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
91 89 90 sylan A * 0 < A B * 0 < B C * 0 < C A = −∞ A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C
92 elxr A * A A = +∞ A = −∞
93 24 92 sylib A * 0 < A B * 0 < B C * 0 < C A A = +∞ A = −∞
94 72 88 91 93 mpjao3dan A * 0 < A B * 0 < B C * 0 < C A 𝑒 B 𝑒 C = A 𝑒 B 𝑒 C