Metamath Proof Explorer


Theorem xpcan2

Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011)

Ref Expression
Assertion xpcan2 CA×C=B×CA=B

Proof

Step Hyp Ref Expression
1 xp11 ACA×C=B×CA=BC=C
2 eqid C=C
3 2 biantru A=BA=BC=C
4 1 3 bitr4di ACA×C=B×CA=B
5 nne ¬AA=
6 simpl A=CA=
7 xpeq1 A=A×C=×C
8 0xp ×C=
9 7 8 eqtrdi A=A×C=
10 9 eqeq1d A=A×C=B×C=B×C
11 eqcom =B×CB×C=
12 10 11 bitrdi A=A×C=B×CB×C=
13 12 adantr A=CA×C=B×CB×C=
14 df-ne C¬C=
15 xpeq0 B×C=B=C=
16 orel2 ¬C=B=C=B=
17 15 16 biimtrid ¬C=B×C=B=
18 14 17 sylbi CB×C=B=
19 18 adantl A=CB×C=B=
20 13 19 sylbid A=CA×C=B×CB=
21 eqtr3 A=B=A=B
22 6 20 21 syl6an A=CA×C=B×CA=B
23 xpeq1 A=BA×C=B×C
24 22 23 impbid1 A=CA×C=B×CA=B
25 5 24 sylanb ¬ACA×C=B×CA=B
26 4 25 pm2.61ian CA×C=B×CA=B