Metamath Proof Explorer


Theorem xpcpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses xpcpropd.1 φHom𝑓A=Hom𝑓B
xpcpropd.2 φcomp𝑓A=comp𝑓B
xpcpropd.3 φHom𝑓C=Hom𝑓D
xpcpropd.4 φcomp𝑓C=comp𝑓D
xpcpropd.a φAV
xpcpropd.b φBV
xpcpropd.c φCV
xpcpropd.d φDV
Assertion xpcpropd φA×cC=B×cD

Proof

Step Hyp Ref Expression
1 xpcpropd.1 φHom𝑓A=Hom𝑓B
2 xpcpropd.2 φcomp𝑓A=comp𝑓B
3 xpcpropd.3 φHom𝑓C=Hom𝑓D
4 xpcpropd.4 φcomp𝑓C=comp𝑓D
5 xpcpropd.a φAV
6 xpcpropd.b φBV
7 xpcpropd.c φCV
8 xpcpropd.d φDV
9 eqid A×cC=A×cC
10 eqid BaseA=BaseA
11 eqid BaseC=BaseC
12 eqid HomA=HomA
13 eqid HomC=HomC
14 eqid compA=compA
15 eqid compC=compC
16 eqidd φBaseA×BaseC=BaseA×BaseC
17 9 10 11 xpcbas BaseA×BaseC=BaseA×cC
18 eqid HomA×cC=HomA×cC
19 9 17 12 13 18 xpchomfval HomA×cC=uBaseA×BaseC,vBaseA×BaseC1stuHomA1stv×2nduHomC2ndv
20 19 a1i φHomA×cC=uBaseA×BaseC,vBaseA×BaseC1stuHomA1stv×2nduHomC2ndv
21 eqidd φxBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=xBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf
22 9 10 11 12 13 14 15 5 7 16 20 21 xpcval φA×cC=BasendxBaseA×BaseCHomndxHomA×cCcompndxxBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf
23 eqid B×cD=B×cD
24 eqid BaseB=BaseB
25 eqid BaseD=BaseD
26 eqid HomB=HomB
27 eqid HomD=HomD
28 eqid compB=compB
29 eqid compD=compD
30 1 homfeqbas φBaseA=BaseB
31 3 homfeqbas φBaseC=BaseD
32 30 31 xpeq12d φBaseA×BaseC=BaseB×BaseD
33 1 3ad2ant1 φuBaseA×BaseCvBaseA×BaseCHom𝑓A=Hom𝑓B
34 xp1st uBaseA×BaseC1stuBaseA
35 34 3ad2ant2 φuBaseA×BaseCvBaseA×BaseC1stuBaseA
36 xp1st vBaseA×BaseC1stvBaseA
37 36 3ad2ant3 φuBaseA×BaseCvBaseA×BaseC1stvBaseA
38 10 12 26 33 35 37 homfeqval φuBaseA×BaseCvBaseA×BaseC1stuHomA1stv=1stuHomB1stv
39 3 3ad2ant1 φuBaseA×BaseCvBaseA×BaseCHom𝑓C=Hom𝑓D
40 xp2nd uBaseA×BaseC2nduBaseC
41 40 3ad2ant2 φuBaseA×BaseCvBaseA×BaseC2nduBaseC
42 xp2nd vBaseA×BaseC2ndvBaseC
43 42 3ad2ant3 φuBaseA×BaseCvBaseA×BaseC2ndvBaseC
44 11 13 27 39 41 43 homfeqval φuBaseA×BaseCvBaseA×BaseC2nduHomC2ndv=2nduHomD2ndv
45 38 44 xpeq12d φuBaseA×BaseCvBaseA×BaseC1stuHomA1stv×2nduHomC2ndv=1stuHomB1stv×2nduHomD2ndv
46 45 mpoeq3dva φuBaseA×BaseC,vBaseA×BaseC1stuHomA1stv×2nduHomC2ndv=uBaseA×BaseC,vBaseA×BaseC1stuHomB1stv×2nduHomD2ndv
47 19 46 eqtrid φHomA×cC=uBaseA×BaseC,vBaseA×BaseC1stuHomB1stv×2nduHomD2ndv
48 1 ad4antr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxHom𝑓A=Hom𝑓B
49 2 ad4antr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxcomp𝑓A=comp𝑓B
50 simp-4r φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxxBaseA×BaseC×BaseA×BaseC
51 xp1st xBaseA×BaseC×BaseA×BaseC1stxBaseA×BaseC
52 50 51 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stxBaseA×BaseC
53 xp1st 1stxBaseA×BaseC1st1stxBaseA
54 52 53 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1st1stxBaseA
55 xp2nd xBaseA×BaseC×BaseA×BaseC2ndxBaseA×BaseC
56 50 55 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndxBaseA×BaseC
57 xp1st 2ndxBaseA×BaseC1st2ndxBaseA
58 56 57 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1st2ndxBaseA
59 simpllr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxyBaseA×BaseC
60 xp1st yBaseA×BaseC1styBaseA
61 59 60 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1styBaseA
62 simpr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxfHomA×cCx
63 1st2nd2 xBaseA×BaseC×BaseA×BaseCx=1stx2ndx
64 50 63 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxx=1stx2ndx
65 64 fveq2d φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxHomA×cCx=HomA×cC1stx2ndx
66 df-ov 1stxHomA×cC2ndx=HomA×cC1stx2ndx
67 65 66 eqtr4di φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxHomA×cCx=1stxHomA×cC2ndx
68 9 17 12 13 18 52 56 xpchom φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stxHomA×cC2ndx=1st1stxHomA1st2ndx×2nd1stxHomC2nd2ndx
69 67 68 eqtrd φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxHomA×cCx=1st1stxHomA1st2ndx×2nd1stxHomC2nd2ndx
70 62 69 eleqtrd φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxf1st1stxHomA1st2ndx×2nd1stxHomC2nd2ndx
71 xp1st f1st1stxHomA1st2ndx×2nd1stxHomC2nd2ndx1stf1st1stxHomA1st2ndx
72 70 71 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stf1st1stxHomA1st2ndx
73 simplr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxg2ndxHomA×cCy
74 9 17 12 13 18 56 59 xpchom φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndxHomA×cCy=1st2ndxHomA1sty×2nd2ndxHomC2ndy
75 73 74 eleqtrd φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxg1st2ndxHomA1sty×2nd2ndxHomC2ndy
76 xp1st g1st2ndxHomA1sty×2nd2ndxHomC2ndy1stg1st2ndxHomA1sty
77 75 76 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stg1st2ndxHomA1sty
78 10 12 14 28 48 49 54 58 61 72 77 comfeqval φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf=1stg1st1stx1st2ndxcompB1sty1stf
79 3 ad4antr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxHom𝑓C=Hom𝑓D
80 4 ad4antr φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCxcomp𝑓C=comp𝑓D
81 xp2nd 1stxBaseA×BaseC2nd1stxBaseC
82 52 81 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2nd1stxBaseC
83 xp2nd 2ndxBaseA×BaseC2nd2ndxBaseC
84 56 83 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2nd2ndxBaseC
85 xp2nd yBaseA×BaseC2ndyBaseC
86 59 85 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndyBaseC
87 xp2nd f1st1stxHomA1st2ndx×2nd1stxHomC2nd2ndx2ndf2nd1stxHomC2nd2ndx
88 70 87 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndf2nd1stxHomC2nd2ndx
89 xp2nd g1st2ndxHomA1sty×2nd2ndxHomC2ndy2ndg2nd2ndxHomC2ndy
90 75 89 syl φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndg2nd2ndxHomC2ndy
91 11 13 15 29 79 80 82 84 86 88 90 comfeqval φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx2ndg2nd1stx2nd2ndxcompC2ndy2ndf=2ndg2nd1stx2nd2ndxcompD2ndy2ndf
92 78 91 opeq12d φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=1stg1st1stx1st2ndxcompB1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
93 92 3impa φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCyfHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=1stg1st1stx1st2ndxcompB1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
94 93 mpoeq3dva φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=g2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompB1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
95 94 3impa φxBaseA×BaseC×BaseA×BaseCyBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=g2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompB1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
96 95 mpoeq3dva φxBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf=xBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompB1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
97 23 24 25 26 27 28 29 6 8 32 47 96 xpcval φB×cD=BasendxBaseA×BaseCHomndxHomA×cCcompndxxBaseA×BaseC×BaseA×BaseC,yBaseA×BaseCg2ndxHomA×cCy,fHomA×cCx1stg1st1stx1st2ndxcompA1sty1stf2ndg2nd1stx2nd2ndxcompC2ndy2ndf
98 22 97 eqtr4d φA×cC=B×cD