Description: Lemma for triple ordering. Calculate the value of the relation. (Contributed by Scott Fenton, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xpord3.1 | |
|
Assertion | xpord3lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord3.1 | |
|
2 | otex | |
|
3 | otex | |
|
4 | eleq1 | |
|
5 | 2fveq3 | |
|
6 | vex | |
|
7 | vex | |
|
8 | vex | |
|
9 | ot1stg | |
|
10 | 6 7 8 9 | mp3an | |
11 | 5 10 | eqtrdi | |
12 | 11 | breq1d | |
13 | 11 | eqeq1d | |
14 | 12 13 | orbi12d | |
15 | 2fveq3 | |
|
16 | ot2ndg | |
|
17 | 6 7 8 16 | mp3an | |
18 | 15 17 | eqtrdi | |
19 | 18 | breq1d | |
20 | 18 | eqeq1d | |
21 | 19 20 | orbi12d | |
22 | fveq2 | |
|
23 | ot3rdg | |
|
24 | 23 | elv | |
25 | 22 24 | eqtrdi | |
26 | 25 | breq1d | |
27 | 25 | eqeq1d | |
28 | 26 27 | orbi12d | |
29 | 14 21 28 | 3anbi123d | |
30 | neeq1 | |
|
31 | 29 30 | anbi12d | |
32 | 4 31 | 3anbi13d | |
33 | eleq1 | |
|
34 | 2fveq3 | |
|
35 | vex | |
|
36 | vex | |
|
37 | vex | |
|
38 | ot1stg | |
|
39 | 35 36 37 38 | mp3an | |
40 | 34 39 | eqtrdi | |
41 | 40 | breq2d | |
42 | 40 | eqeq2d | |
43 | 41 42 | orbi12d | |
44 | 2fveq3 | |
|
45 | ot2ndg | |
|
46 | 35 36 37 45 | mp3an | |
47 | 44 46 | eqtrdi | |
48 | 47 | breq2d | |
49 | 47 | eqeq2d | |
50 | 48 49 | orbi12d | |
51 | fveq2 | |
|
52 | ot3rdg | |
|
53 | 52 | elv | |
54 | 51 53 | eqtrdi | |
55 | 54 | breq2d | |
56 | 54 | eqeq2d | |
57 | 55 56 | orbi12d | |
58 | 43 50 57 | 3anbi123d | |
59 | neeq2 | |
|
60 | 58 59 | anbi12d | |
61 | 33 60 | 3anbi23d | |
62 | 2 3 32 61 1 | brab | |
63 | otelxp | |
|
64 | otelxp | |
|
65 | 6 7 8 | otthne | |
66 | 65 | anbi2i | |
67 | 63 64 66 | 3anbi123i | |
68 | 62 67 | bitri | |