Metamath Proof Explorer


Theorem xrge0mulgnn0

Description: The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Assertion xrge0mulgnn0 A0B0+∞A𝑠*𝑠0+∞B=A𝑒B

Proof

Step Hyp Ref Expression
1 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
2 iccssxr 0+∞*
3 xrsbas *=Base𝑠*
4 2 3 sseqtri 0+∞Base𝑠*
5 eqid 𝑠*=𝑠*
6 eqid invg𝑠*=invg𝑠*
7 xrs0 0=0𝑠*
8 xrge00 0=0𝑠*𝑠0+∞
9 7 8 eqtr3i 0𝑠*=0𝑠*𝑠0+∞
10 1 4 5 6 9 ressmulgnn0 A0B0+∞A𝑠*𝑠0+∞B=A𝑠*B
11 nn0z A0A
12 eliccxr B0+∞B*
13 xrsmulgzz AB*A𝑠*B=A𝑒B
14 11 12 13 syl2an A0B0+∞A𝑠*B=A𝑒B
15 10 14 eqtrd A0B0+∞A𝑠*𝑠0+∞B=A𝑒B