Metamath Proof Explorer


Theorem yonedalem4a

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yonedalem21.f φFOFuncS
yonedalem21.x φXB
yonedalem4.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
yonedalem4.p φA1stFX
Assertion yonedalem4a φFNXA=yBgyHomCXX2ndFygA

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yonedalem21.f φFOFuncS
17 yonedalem21.x φXB
18 yonedalem4.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
19 yonedalem4.p φA1stFX
20 18 a1i φN=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
21 simprl φf=Fx=Xf=F
22 21 fveq2d φf=Fx=X1stf=1stF
23 simprr φf=Fx=Xx=X
24 22 23 fveq12d φf=Fx=X1stfx=1stFX
25 simplrr φf=Fx=XyBx=X
26 25 oveq2d φf=Fx=XyByHomCx=yHomCX
27 simplrl φf=Fx=XyBf=F
28 27 fveq2d φf=Fx=XyB2ndf=2ndF
29 eqidd φf=Fx=XyBy=y
30 28 25 29 oveq123d φf=Fx=XyBx2ndfy=X2ndFy
31 30 fveq1d φf=Fx=XyBx2ndfyg=X2ndFyg
32 31 fveq1d φf=Fx=XyBx2ndfygu=X2ndFygu
33 26 32 mpteq12dv φf=Fx=XyBgyHomCxx2ndfygu=gyHomCXX2ndFygu
34 33 mpteq2dva φf=Fx=XyBgyHomCxx2ndfygu=yBgyHomCXX2ndFygu
35 24 34 mpteq12dv φf=Fx=Xu1stfxyBgyHomCxx2ndfygu=u1stFXyBgyHomCXX2ndFygu
36 fvex 1stFXV
37 36 mptex u1stFXyBgyHomCXX2ndFyguV
38 37 a1i φu1stFXyBgyHomCXX2ndFyguV
39 20 35 16 17 38 ovmpod φFNX=u1stFXyBgyHomCXX2ndFygu
40 simpr φu=Au=A
41 40 fveq2d φu=AX2ndFygu=X2ndFygA
42 41 mpteq2dv φu=AgyHomCXX2ndFygu=gyHomCXX2ndFygA
43 42 mpteq2dv φu=AyBgyHomCXX2ndFygu=yBgyHomCXX2ndFygA
44 2 fvexi BV
45 44 mptex yBgyHomCXX2ndFygAV
46 45 a1i φyBgyHomCXX2ndFygAV
47 39 43 19 46 fvmptd φFNXA=yBgyHomCXX2ndFygA