Metamath Proof Explorer


Theorem yonedalem4a

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y = Yon C
yoneda.b B = Base C
yoneda.1 1 ˙ = Id C
yoneda.o O = oppCat C
yoneda.s S = SetCat U
yoneda.t T = SetCat V
yoneda.q Q = O FuncCat S
yoneda.h H = Hom F Q
yoneda.r R = Q × c O FuncCat T
yoneda.e E = O eval F S
yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
yoneda.c φ C Cat
yoneda.w φ V W
yoneda.u φ ran Hom 𝑓 C U
yoneda.v φ ran Hom 𝑓 Q U V
yonedalem21.f φ F O Func S
yonedalem21.x φ X B
yonedalem4.n N = f O Func S , x B u 1 st f x y B g y Hom C x x 2 nd f y g u
yonedalem4.p φ A 1 st F X
Assertion yonedalem4a φ F N X A = y B g y Hom C X X 2 nd F y g A

Proof

Step Hyp Ref Expression
1 yoneda.y Y = Yon C
2 yoneda.b B = Base C
3 yoneda.1 1 ˙ = Id C
4 yoneda.o O = oppCat C
5 yoneda.s S = SetCat U
6 yoneda.t T = SetCat V
7 yoneda.q Q = O FuncCat S
8 yoneda.h H = Hom F Q
9 yoneda.r R = Q × c O FuncCat T
10 yoneda.e E = O eval F S
11 yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
12 yoneda.c φ C Cat
13 yoneda.w φ V W
14 yoneda.u φ ran Hom 𝑓 C U
15 yoneda.v φ ran Hom 𝑓 Q U V
16 yonedalem21.f φ F O Func S
17 yonedalem21.x φ X B
18 yonedalem4.n N = f O Func S , x B u 1 st f x y B g y Hom C x x 2 nd f y g u
19 yonedalem4.p φ A 1 st F X
20 18 a1i φ N = f O Func S , x B u 1 st f x y B g y Hom C x x 2 nd f y g u
21 simprl φ f = F x = X f = F
22 21 fveq2d φ f = F x = X 1 st f = 1 st F
23 simprr φ f = F x = X x = X
24 22 23 fveq12d φ f = F x = X 1 st f x = 1 st F X
25 simplrr φ f = F x = X y B x = X
26 25 oveq2d φ f = F x = X y B y Hom C x = y Hom C X
27 simplrl φ f = F x = X y B f = F
28 27 fveq2d φ f = F x = X y B 2 nd f = 2 nd F
29 eqidd φ f = F x = X y B y = y
30 28 25 29 oveq123d φ f = F x = X y B x 2 nd f y = X 2 nd F y
31 30 fveq1d φ f = F x = X y B x 2 nd f y g = X 2 nd F y g
32 31 fveq1d φ f = F x = X y B x 2 nd f y g u = X 2 nd F y g u
33 26 32 mpteq12dv φ f = F x = X y B g y Hom C x x 2 nd f y g u = g y Hom C X X 2 nd F y g u
34 33 mpteq2dva φ f = F x = X y B g y Hom C x x 2 nd f y g u = y B g y Hom C X X 2 nd F y g u
35 24 34 mpteq12dv φ f = F x = X u 1 st f x y B g y Hom C x x 2 nd f y g u = u 1 st F X y B g y Hom C X X 2 nd F y g u
36 fvex 1 st F X V
37 36 mptex u 1 st F X y B g y Hom C X X 2 nd F y g u V
38 37 a1i φ u 1 st F X y B g y Hom C X X 2 nd F y g u V
39 20 35 16 17 38 ovmpod φ F N X = u 1 st F X y B g y Hom C X X 2 nd F y g u
40 simpr φ u = A u = A
41 40 fveq2d φ u = A X 2 nd F y g u = X 2 nd F y g A
42 41 mpteq2dv φ u = A g y Hom C X X 2 nd F y g u = g y Hom C X X 2 nd F y g A
43 42 mpteq2dv φ u = A y B g y Hom C X X 2 nd F y g u = y B g y Hom C X X 2 nd F y g A
44 2 fvexi B V
45 44 mptex y B g y Hom C X X 2 nd F y g A V
46 45 a1i φ y B g y Hom C X X 2 nd F y g A V
47 39 43 19 46 fvmptd φ F N X A = y B g y Hom C X X 2 nd F y g A