Metamath Proof Explorer


Theorem zextle

Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005)

Ref Expression
Assertion zextle MNkkMkNM=N

Proof

Step Hyp Ref Expression
1 zre MM
2 1 leidd MMM
3 2 adantr MkkMkNMM
4 breq1 k=MkMMM
5 breq1 k=MkNMN
6 4 5 bibi12d k=MkMkNMMMN
7 6 rspcva MkkMkNMMMN
8 3 7 mpbid MkkMkNMN
9 8 adantlr MNkkMkNMN
10 zre NN
11 10 leidd NNN
12 11 adantr NkkMkNNN
13 breq1 k=NkMNM
14 breq1 k=NkNNN
15 13 14 bibi12d k=NkMkNNMNN
16 15 rspcva NkkMkNNMNN
17 12 16 mpbird NkkMkNNM
18 17 adantll MNkkMkNNM
19 9 18 jca MNkkMkNMNNM
20 19 ex MNkkMkNMNNM
21 letri3 MNM=NMNNM
22 1 10 21 syl2an MNM=NMNNM
23 20 22 sylibrd MNkkMkNM=N
24 23 3impia MNkkMkNM=N