Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009) (Proof shortened by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zindd.1 | |
|
zindd.2 | |
||
zindd.3 | |
||
zindd.4 | |
||
zindd.5 | |
||
zindd.6 | |
||
zindd.7 | |
||
zindd.8 | |
||
Assertion | zindd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zindd.1 | |
|
2 | zindd.2 | |
|
3 | zindd.3 | |
|
4 | zindd.4 | |
|
5 | zindd.5 | |
|
6 | zindd.6 | |
|
7 | zindd.7 | |
|
8 | zindd.8 | |
|
9 | znegcl | |
|
10 | elznn0nn | |
|
11 | 9 10 | sylib | |
12 | simpr | |
|
13 | 12 | orim2i | |
14 | 11 13 | syl | |
15 | zcn | |
|
16 | 15 | negnegd | |
17 | 16 | eleq1d | |
18 | 17 | orbi2d | |
19 | 14 18 | mpbid | |
20 | 1 | imbi2d | |
21 | 2 | imbi2d | |
22 | 3 | imbi2d | |
23 | 4 | imbi2d | |
24 | 7 | com12 | |
25 | 24 | a2d | |
26 | 20 21 22 23 6 25 | nn0ind | |
27 | 26 | com12 | |
28 | 20 21 22 21 6 25 | nn0ind | |
29 | nnnn0 | |
|
30 | 28 29 | syl11 | |
31 | 30 8 | mpdd | |
32 | 27 31 | jaod | |
33 | 19 32 | syl5 | |
34 | 33 | ralrimiv | |
35 | znegcl | |
|
36 | negeq | |
|
37 | zcn | |
|
38 | 37 | negnegd | |
39 | 36 38 | sylan9eqr | |
40 | 39 | eqcomd | |
41 | 40 4 | syl | |
42 | 41 | bicomd | |
43 | 35 42 | rspcdv | |
44 | 43 | com12 | |
45 | 44 | ralrimiv | |
46 | 5 | rspccv | |
47 | 34 45 46 | 3syl | |