Metamath Proof Explorer


Theorem zindd

Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009) (Proof shortened by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses zindd.1 x=0φψ
zindd.2 x=yφχ
zindd.3 x=y+1φτ
zindd.4 x=yφθ
zindd.5 x=Aφη
zindd.6 ζψ
zindd.7 ζy0χτ
zindd.8 ζyχθ
Assertion zindd ζAη

Proof

Step Hyp Ref Expression
1 zindd.1 x=0φψ
2 zindd.2 x=yφχ
3 zindd.3 x=y+1φτ
4 zindd.4 x=yφθ
5 zindd.5 x=Aφη
6 zindd.6 ζψ
7 zindd.7 ζy0χτ
8 zindd.8 ζyχθ
9 znegcl yy
10 elznn0nn yy0yy
11 9 10 sylib yy0yy
12 simpr yyy
13 12 orim2i y0yyy0y
14 11 13 syl yy0y
15 zcn yy
16 15 negnegd yy=y
17 16 eleq1d yyy
18 17 orbi2d yy0yy0y
19 14 18 mpbid yy0y
20 1 imbi2d x=0ζφζψ
21 2 imbi2d x=yζφζχ
22 3 imbi2d x=y+1ζφζτ
23 4 imbi2d x=yζφζθ
24 7 com12 y0ζχτ
25 24 a2d y0ζχζτ
26 20 21 22 23 6 25 nn0ind y0ζθ
27 26 com12 ζy0θ
28 20 21 22 21 6 25 nn0ind y0ζχ
29 nnnn0 yy0
30 28 29 syl11 ζyχ
31 30 8 mpdd ζyθ
32 27 31 jaod ζy0yθ
33 19 32 syl5 ζyθ
34 33 ralrimiv ζyθ
35 znegcl xx
36 negeq y=xy=x
37 zcn xx
38 37 negnegd xx=x
39 36 38 sylan9eqr xy=xy=x
40 39 eqcomd xy=xx=y
41 40 4 syl xy=xφθ
42 41 bicomd xy=xθφ
43 35 42 rspcdv xyθφ
44 43 com12 yθxφ
45 44 ralrimiv yθxφ
46 5 rspccv xφAη
47 34 45 46 3syl ζAη