Metamath Proof Explorer


Theorem zlmodzxzsub

Description: The subtraction of the ZZ-module ZZ X. ZZ . (Contributed by AV, 22-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z Z = ring freeLMod 0 1
zlmodzxzsub.m - ˙ = - Z
Assertion zlmodzxzsub A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A B 1 C D

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zlmodzxzsub.m - ˙ = - Z
3 zsubcl A B A B
4 simpr A B B
5 3 4 jca A B A B B
6 zsubcl C D C D
7 simpr C D D
8 6 7 jca C D C D D
9 eqid + Z = + Z
10 1 9 zlmodzxzadd A B B C D D 0 A B 1 C D + Z 0 B 1 D = 0 A - B + B 1 C - D + D
11 5 8 10 syl2an A B C D 0 A B 1 C D + Z 0 B 1 D = 0 A - B + B 1 C - D + D
12 zcn A A
13 zcn B B
14 npcan A B A - B + B = A
15 12 13 14 syl2an A B A - B + B = A
16 15 adantr A B C D A - B + B = A
17 16 opeq2d A B C D 0 A - B + B = 0 A
18 zcn C C
19 zcn D D
20 npcan C D C - D + D = C
21 18 19 20 syl2an C D C - D + D = C
22 21 adantl A B C D C - D + D = C
23 22 opeq2d A B C D 1 C - D + D = 1 C
24 17 23 preq12d A B C D 0 A - B + B 1 C - D + D = 0 A 1 C
25 11 24 eqtrd A B C D 0 A B 1 C D + Z 0 B 1 D = 0 A 1 C
26 1 zlmodzxzlmod Z LMod ring = Scalar Z
27 lmodgrp Z LMod Z Grp
28 27 adantr Z LMod ring = Scalar Z Z Grp
29 26 28 mp1i A B C D Z Grp
30 1 zlmodzxzel A C 0 A 1 C Base Z
31 30 ad2ant2r A B C D 0 A 1 C Base Z
32 1 zlmodzxzel B D 0 B 1 D Base Z
33 4 7 32 syl2an A B C D 0 B 1 D Base Z
34 1 zlmodzxzel A B C D 0 A B 1 C D Base Z
35 3 6 34 syl2an A B C D 0 A B 1 C D Base Z
36 eqid Base Z = Base Z
37 36 9 2 grpsubadd Z Grp 0 A 1 C Base Z 0 B 1 D Base Z 0 A B 1 C D Base Z 0 A 1 C - ˙ 0 B 1 D = 0 A B 1 C D 0 A B 1 C D + Z 0 B 1 D = 0 A 1 C
38 29 31 33 35 37 syl13anc A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A B 1 C D 0 A B 1 C D + Z 0 B 1 D = 0 A 1 C
39 25 38 mpbird A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A B 1 C D