Metamath Proof Explorer


Theorem zlmodzxzadd

Description: The addition of the ZZ-module ZZ X. ZZ . (Contributed by AV, 22-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z Z = ring freeLMod 0 1
zlmodzxzadd.p + ˙ = + Z
Assertion zlmodzxzadd A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A + B 1 C + D

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zlmodzxzadd.p + ˙ = + Z
3 eqid Base Z = Base Z
4 zringring ring Ring
5 4 a1i A B C D ring Ring
6 prex 0 1 V
7 6 a1i A B C D 0 1 V
8 simpl A B A
9 simpl C D C
10 1 zlmodzxzel A C 0 A 1 C Base Z
11 8 9 10 syl2an A B C D 0 A 1 C Base Z
12 simpr A B B
13 simpr C D D
14 1 zlmodzxzel B D 0 B 1 D Base Z
15 12 13 14 syl2an A B C D 0 B 1 D Base Z
16 eqid + ring = + ring
17 1 3 5 7 11 15 16 2 frlmplusgval A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A 1 C + ring f 0 B 1 D
18 c0ex 0 V
19 1ex 1 V
20 18 19 pm3.2i 0 V 1 V
21 20 a1i A B C D 0 V 1 V
22 8 9 anim12i A B C D A C
23 0ne1 0 1
24 23 a1i A B C D 0 1
25 fnprg 0 V 1 V A C 0 1 0 A 1 C Fn 0 1
26 21 22 24 25 syl3anc A B C D 0 A 1 C Fn 0 1
27 12 13 anim12i A B C D B D
28 fnprg 0 V 1 V B D 0 1 0 B 1 D Fn 0 1
29 21 27 24 28 syl3anc A B C D 0 B 1 D Fn 0 1
30 7 26 29 offvalfv A B C D 0 A 1 C + ring f 0 B 1 D = x 0 1 0 A 1 C x + ring 0 B 1 D x
31 zringplusg + = + ring
32 31 eqcomi + ring = +
33 32 oveqi A + ring B = A + B
34 33 opeq2i 0 A + ring B = 0 A + B
35 32 oveqi C + ring D = C + D
36 35 opeq2i 1 C + ring D = 1 C + D
37 34 36 preq12i 0 A + ring B 1 C + ring D = 0 A + B 1 C + D
38 18 a1i A B C D 0 V
39 19 a1i A B C D 1 V
40 ovexd A B C D A + ring B V
41 ovexd A B C D C + ring D V
42 fveq2 x = 0 0 A 1 C x = 0 A 1 C 0
43 fveq2 x = 0 0 B 1 D x = 0 B 1 D 0
44 42 43 oveq12d x = 0 0 A 1 C x + ring 0 B 1 D x = 0 A 1 C 0 + ring 0 B 1 D 0
45 8 adantr A B C D A
46 fvpr1g 0 V A 0 1 0 A 1 C 0 = A
47 38 45 24 46 syl3anc A B C D 0 A 1 C 0 = A
48 12 adantr A B C D B
49 fvpr1g 0 V B 0 1 0 B 1 D 0 = B
50 38 48 24 49 syl3anc A B C D 0 B 1 D 0 = B
51 47 50 oveq12d A B C D 0 A 1 C 0 + ring 0 B 1 D 0 = A + ring B
52 44 51 sylan9eqr A B C D x = 0 0 A 1 C x + ring 0 B 1 D x = A + ring B
53 fveq2 x = 1 0 A 1 C x = 0 A 1 C 1
54 fveq2 x = 1 0 B 1 D x = 0 B 1 D 1
55 53 54 oveq12d x = 1 0 A 1 C x + ring 0 B 1 D x = 0 A 1 C 1 + ring 0 B 1 D 1
56 9 adantl A B C D C
57 fvpr2g 1 V C 0 1 0 A 1 C 1 = C
58 39 56 24 57 syl3anc A B C D 0 A 1 C 1 = C
59 13 adantl A B C D D
60 fvpr2g 1 V D 0 1 0 B 1 D 1 = D
61 39 59 24 60 syl3anc A B C D 0 B 1 D 1 = D
62 58 61 oveq12d A B C D 0 A 1 C 1 + ring 0 B 1 D 1 = C + ring D
63 55 62 sylan9eqr A B C D x = 1 0 A 1 C x + ring 0 B 1 D x = C + ring D
64 38 39 40 41 52 63 fmptpr A B C D 0 A + ring B 1 C + ring D = x 0 1 0 A 1 C x + ring 0 B 1 D x
65 37 64 syl5reqr A B C D x 0 1 0 A 1 C x + ring 0 B 1 D x = 0 A + B 1 C + D
66 17 30 65 3eqtrd A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A + B 1 C + D