Metamath Proof Explorer


Theorem zlmodzxzadd

Description: The addition of the ZZ-module ZZ X. ZZ . (Contributed by AV, 22-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z Z = ring freeLMod 0 1
zlmodzxzadd.p + ˙ = + Z
Assertion zlmodzxzadd A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A + B 1 C + D

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zlmodzxzadd.p + ˙ = + Z
3 eqid Base Z = Base Z
4 zringring ring Ring
5 4 a1i A B C D ring Ring
6 prex 0 1 V
7 6 a1i A B C D 0 1 V
8 simpl A B A
9 simpl C D C
10 1 zlmodzxzel A C 0 A 1 C Base Z
11 8 9 10 syl2an A B C D 0 A 1 C Base Z
12 simpr A B B
13 simpr C D D
14 1 zlmodzxzel B D 0 B 1 D Base Z
15 12 13 14 syl2an A B C D 0 B 1 D Base Z
16 eqid + ring = + ring
17 1 3 5 7 11 15 16 2 frlmplusgval A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A 1 C + ring f 0 B 1 D
18 c0ex 0 V
19 1ex 1 V
20 18 19 pm3.2i 0 V 1 V
21 20 a1i A B C D 0 V 1 V
22 8 9 anim12i A B C D A C
23 0ne1 0 1
24 23 a1i A B C D 0 1
25 fnprg 0 V 1 V A C 0 1 0 A 1 C Fn 0 1
26 21 22 24 25 syl3anc A B C D 0 A 1 C Fn 0 1
27 12 13 anim12i A B C D B D
28 fnprg 0 V 1 V B D 0 1 0 B 1 D Fn 0 1
29 21 27 24 28 syl3anc A B C D 0 B 1 D Fn 0 1
30 7 26 29 offvalfv A B C D 0 A 1 C + ring f 0 B 1 D = x 0 1 0 A 1 C x + ring 0 B 1 D x
31 18 a1i A B C D 0 V
32 19 a1i A B C D 1 V
33 ovexd A B C D A + ring B V
34 ovexd A B C D C + ring D V
35 fveq2 x = 0 0 A 1 C x = 0 A 1 C 0
36 fveq2 x = 0 0 B 1 D x = 0 B 1 D 0
37 35 36 oveq12d x = 0 0 A 1 C x + ring 0 B 1 D x = 0 A 1 C 0 + ring 0 B 1 D 0
38 8 adantr A B C D A
39 fvpr1g 0 V A 0 1 0 A 1 C 0 = A
40 31 38 24 39 syl3anc A B C D 0 A 1 C 0 = A
41 12 adantr A B C D B
42 fvpr1g 0 V B 0 1 0 B 1 D 0 = B
43 31 41 24 42 syl3anc A B C D 0 B 1 D 0 = B
44 40 43 oveq12d A B C D 0 A 1 C 0 + ring 0 B 1 D 0 = A + ring B
45 37 44 sylan9eqr A B C D x = 0 0 A 1 C x + ring 0 B 1 D x = A + ring B
46 fveq2 x = 1 0 A 1 C x = 0 A 1 C 1
47 fveq2 x = 1 0 B 1 D x = 0 B 1 D 1
48 46 47 oveq12d x = 1 0 A 1 C x + ring 0 B 1 D x = 0 A 1 C 1 + ring 0 B 1 D 1
49 9 adantl A B C D C
50 fvpr2g 1 V C 0 1 0 A 1 C 1 = C
51 32 49 24 50 syl3anc A B C D 0 A 1 C 1 = C
52 13 adantl A B C D D
53 fvpr2g 1 V D 0 1 0 B 1 D 1 = D
54 32 52 24 53 syl3anc A B C D 0 B 1 D 1 = D
55 51 54 oveq12d A B C D 0 A 1 C 1 + ring 0 B 1 D 1 = C + ring D
56 48 55 sylan9eqr A B C D x = 1 0 A 1 C x + ring 0 B 1 D x = C + ring D
57 31 32 33 34 45 56 fmptpr A B C D 0 A + ring B 1 C + ring D = x 0 1 0 A 1 C x + ring 0 B 1 D x
58 zringplusg + = + ring
59 58 eqcomi + ring = +
60 59 oveqi A + ring B = A + B
61 60 opeq2i 0 A + ring B = 0 A + B
62 59 oveqi C + ring D = C + D
63 62 opeq2i 1 C + ring D = 1 C + D
64 61 63 preq12i 0 A + ring B 1 C + ring D = 0 A + B 1 C + D
65 57 64 eqtr3di A B C D x 0 1 0 A 1 C x + ring 0 B 1 D x = 0 A + B 1 C + D
66 17 30 65 3eqtrd A B C D 0 A 1 C + ˙ 0 B 1 D = 0 A + B 1 C + D