Metamath Proof Explorer


Theorem zlmodzxzsubm

Description: The subtraction of the ZZ-module ZZ X. ZZ expressed as addition. (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z Z = ring freeLMod 0 1
zlmodzxzsub.m - ˙ = - Z
Assertion zlmodzxzsubm A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A 1 C + Z -1 Z 0 B 1 D

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zlmodzxzsub.m - ˙ = - Z
3 1 zlmodzxzlmod Z LMod ring = Scalar Z
4 3 simpli Z LMod
5 4 a1i A B C D Z LMod
6 1 zlmodzxzel A C 0 A 1 C Base Z
7 6 ad2ant2r A B C D 0 A 1 C Base Z
8 1 zlmodzxzel B D 0 B 1 D Base Z
9 8 ad2ant2l A B C D 0 B 1 D Base Z
10 eqid Base Z = Base Z
11 eqid + Z = + Z
12 3 simpri ring = Scalar Z
13 eqid Z = Z
14 eqid inv g ring = inv g ring
15 zring1 1 = 1 ring
16 10 11 2 12 13 14 15 lmodvsubval2 Z LMod 0 A 1 C Base Z 0 B 1 D Base Z 0 A 1 C - ˙ 0 B 1 D = 0 A 1 C + Z inv g ring 1 Z 0 B 1 D
17 5 7 9 16 syl3anc A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A 1 C + Z inv g ring 1 Z 0 B 1 D
18 1z 1
19 zringinvg 1 1 = inv g ring 1
20 18 19 mp1i A B C D 1 = inv g ring 1
21 20 eqcomd A B C D inv g ring 1 = 1
22 21 oveq1d A B C D inv g ring 1 Z 0 B 1 D = -1 Z 0 B 1 D
23 22 oveq2d A B C D 0 A 1 C + Z inv g ring 1 Z 0 B 1 D = 0 A 1 C + Z -1 Z 0 B 1 D
24 17 23 eqtrd A B C D 0 A 1 C - ˙ 0 B 1 D = 0 A 1 C + Z -1 Z 0 B 1 D