Description: The group ZZ / n ZZ is cyclic for all n (including n = 0 ). (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zncyg.y | |
|
Assertion | zncyg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zncyg.y | |
|
2 | 1 | zncrng | |
3 | crngring | |
|
4 | 2 3 | syl | |
5 | ringgrp | |
|
6 | 4 5 | syl | |
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | ringidcl | |
10 | 4 9 | syl | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 8 | zrhval2 | |
14 | 4 13 | syl | |
15 | 14 | rneqd | |
16 | 1 7 11 | znzrhfo | |
17 | forn | |
|
18 | 16 17 | syl | |
19 | 15 18 | eqtr3d | |
20 | oveq2 | |
|
21 | 20 | mpteq2dv | |
22 | 21 | rneqd | |
23 | 22 | eqeq1d | |
24 | 23 | rspcev | |
25 | 10 19 24 | syl2anc | |
26 | 7 12 | iscyg | |
27 | 6 25 26 | sylanbrc | |