Metamath Proof Explorer


Theorem zncyg

Description: The group ZZ / n ZZ is cyclic for all n (including n = 0 ). (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis zncyg.y Y=/N
Assertion zncyg N0YCycGrp

Proof

Step Hyp Ref Expression
1 zncyg.y Y=/N
2 1 zncrng N0YCRing
3 crngring YCRingYRing
4 2 3 syl N0YRing
5 ringgrp YRingYGrp
6 4 5 syl N0YGrp
7 eqid BaseY=BaseY
8 eqid 1Y=1Y
9 7 8 ringidcl YRing1YBaseY
10 4 9 syl N01YBaseY
11 eqid ℤRHomY=ℤRHomY
12 eqid Y=Y
13 11 12 8 zrhval2 YRingℤRHomY=nnY1Y
14 4 13 syl N0ℤRHomY=nnY1Y
15 14 rneqd N0ranℤRHomY=rannnY1Y
16 1 7 11 znzrhfo N0ℤRHomY:ontoBaseY
17 forn ℤRHomY:ontoBaseYranℤRHomY=BaseY
18 16 17 syl N0ranℤRHomY=BaseY
19 15 18 eqtr3d N0rannnY1Y=BaseY
20 oveq2 x=1YnYx=nY1Y
21 20 mpteq2dv x=1YnnYx=nnY1Y
22 21 rneqd x=1YrannnYx=rannnY1Y
23 22 eqeq1d x=1YrannnYx=BaseYrannnY1Y=BaseY
24 23 rspcev 1YBaseYrannnY1Y=BaseYxBaseYrannnYx=BaseY
25 10 19 24 syl2anc N0xBaseYrannnYx=BaseY
26 7 12 iscyg YCycGrpYGrpxBaseYrannnYx=BaseY
27 6 25 26 sylanbrc N0YCycGrp