Metamath Proof Explorer


Theorem zrtelqelz

Description: zsqrtelqelz generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion zrtelqelz A N A 1 N A 1 N

Proof

Step Hyp Ref Expression
1 qdencl A 1 N denom A 1 N
2 1 3ad2ant3 A N A 1 N denom A 1 N
3 2 nnrpd A N A 1 N denom A 1 N +
4 1rp 1 +
5 4 a1i A N A 1 N 1 +
6 simp2 A N A 1 N N
7 6 nnzd A N A 1 N N
8 6 nnne0d A N A 1 N N 0
9 1exp N 1 N = 1
10 7 9 syl A N A 1 N 1 N = 1
11 zcn A A
12 11 3ad2ant1 A N A 1 N A
13 cxproot A N A 1 N N = A
14 12 6 13 syl2anc A N A 1 N A 1 N N = A
15 14 fveq2d A N A 1 N denom A 1 N N = denom A
16 zq A A
17 qden1elz A denom A = 1 A
18 16 17 syl A denom A = 1 A
19 18 ibir A denom A = 1
20 19 3ad2ant1 A N A 1 N denom A = 1
21 15 20 eqtrd A N A 1 N denom A 1 N N = 1
22 simp3 A N A 1 N A 1 N
23 6 nnnn0d A N A 1 N N 0
24 denexp A 1 N N 0 denom A 1 N N = denom A 1 N N
25 22 23 24 syl2anc A N A 1 N denom A 1 N N = denom A 1 N N
26 10 21 25 3eqtr2rd A N A 1 N denom A 1 N N = 1 N
27 3 5 7 8 26 exp11d A N A 1 N denom A 1 N = 1
28 qden1elz A 1 N denom A 1 N = 1 A 1 N
29 28 3ad2ant3 A N A 1 N denom A 1 N = 1 A 1 N
30 27 29 mpbid A N A 1 N A 1 N