| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqreunnlem1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
| 5 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
| 6 |
5
|
sqcld |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
| 7 |
|
2times |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℂ → ( 2 · ( 𝑎 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℂ → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
| 11 |
10
|
ad2antrl |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
| 12 |
4 11
|
eqtrd |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( 𝑃 mod 4 ) = ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 ↔ ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) ) |
| 17 |
15 16
|
anbi12d |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( ( 𝑃 mod 4 ) = 1 ∧ 𝑃 ∈ ℙ ) ↔ ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) ) ) |
| 18 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
| 19 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 20 |
|
zexpcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( 𝑎 ↑ 2 ) ∈ ℤ ) |
| 21 |
18 19 20
|
sylancl |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℤ ) |
| 22 |
|
2mulprm |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℤ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ↔ ( 𝑎 ↑ 2 ) = 1 ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ↔ ( 𝑎 ↑ 2 ) = 1 ) ) |
| 24 |
|
oveq2 |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( 2 · ( 𝑎 ↑ 2 ) ) = ( 2 · 1 ) ) |
| 25 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 26 |
24 25
|
eqtrdi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( 2 · ( 𝑎 ↑ 2 ) ) = 2 ) |
| 27 |
26
|
oveq1d |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = ( 2 mod 4 ) ) |
| 28 |
|
2re |
⊢ 2 ∈ ℝ |
| 29 |
|
4nn |
⊢ 4 ∈ ℕ |
| 30 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
| 31 |
29 30
|
ax-mp |
⊢ 4 ∈ ℝ+ |
| 32 |
|
0le2 |
⊢ 0 ≤ 2 |
| 33 |
|
2lt4 |
⊢ 2 < 4 |
| 34 |
|
modid |
⊢ ( ( ( 2 ∈ ℝ ∧ 4 ∈ ℝ+ ) ∧ ( 0 ≤ 2 ∧ 2 < 4 ) ) → ( 2 mod 4 ) = 2 ) |
| 35 |
28 31 32 33 34
|
mp4an |
⊢ ( 2 mod 4 ) = 2 |
| 36 |
27 35
|
eqtrdi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 2 ) |
| 37 |
36
|
eqeq1d |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ↔ 2 = 1 ) ) |
| 38 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 39 |
|
eqcom |
⊢ ( 2 = 1 ↔ 1 = 2 ) |
| 40 |
|
eqneqall |
⊢ ( 1 = 2 → ( 1 ≠ 2 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 41 |
40
|
com12 |
⊢ ( 1 ≠ 2 → ( 1 = 2 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 42 |
39 41
|
biimtrid |
⊢ ( 1 ≠ 2 → ( 2 = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 43 |
38 42
|
ax-mp |
⊢ ( 2 = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) |
| 44 |
37 43
|
biimtrdi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 45 |
23 44
|
biimtrdi |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) |
| 46 |
45
|
impcomd |
⊢ ( 𝑎 ∈ ℕ → ( ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 47 |
46
|
com12 |
⊢ ( ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 48 |
17 47
|
biimtrdi |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( ( 𝑃 mod 4 ) = 1 ∧ 𝑃 ∈ ℙ ) → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) |
| 49 |
48
|
expd |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 → ( 𝑃 ∈ ℙ → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
| 50 |
49
|
com34 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
| 51 |
50
|
eqcoms |
⊢ ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
| 52 |
51
|
com14 |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
| 53 |
52
|
imp31 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 54 |
53
|
ad2antrl |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 55 |
13 54
|
sylbid |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 56 |
55
|
expimpd |
⊢ ( 𝑏 = 𝑎 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 57 |
|
2a1 |
⊢ ( 𝑏 ≠ 𝑎 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
| 58 |
56 57
|
pm2.61ine |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) |
| 59 |
58
|
pm4.71d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
| 60 |
|
nnre |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℝ ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ℝ ) |
| 62 |
|
nnre |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℝ ) |
| 63 |
|
ltlen |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 < 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
| 64 |
61 62 63
|
syl2an |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( 𝑎 < 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
| 65 |
64
|
bibi2d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ↔ ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ↔ ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) ) |
| 67 |
59 66
|
mpbird |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ) |
| 68 |
67
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ) ) |
| 69 |
68
|
pm5.32rd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
| 70 |
69
|
reubidva |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
| 71 |
70
|
reubidva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
| 72 |
1 71
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |