| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqreunnlem1 |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
3
|
adantr |
|
| 5 |
|
nncn |
|
| 6 |
5
|
sqcld |
|
| 7 |
|
2times |
|
| 8 |
7
|
eqcomd |
|
| 9 |
6 8
|
syl |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
ad2antrl |
|
| 12 |
4 11
|
eqtrd |
|
| 13 |
12
|
eqeq1d |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
eleq1 |
|
| 17 |
15 16
|
anbi12d |
|
| 18 |
|
nnz |
|
| 19 |
|
2nn0 |
|
| 20 |
|
zexpcl |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
|
2mulprm |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
oveq2 |
|
| 25 |
|
2t1e2 |
|
| 26 |
24 25
|
eqtrdi |
|
| 27 |
26
|
oveq1d |
|
| 28 |
|
2re |
|
| 29 |
|
4nn |
|
| 30 |
|
nnrp |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
|
0le2 |
|
| 33 |
|
2lt4 |
|
| 34 |
|
modid |
|
| 35 |
28 31 32 33 34
|
mp4an |
|
| 36 |
27 35
|
eqtrdi |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
|
1ne2 |
|
| 39 |
|
eqcom |
|
| 40 |
|
eqneqall |
|
| 41 |
40
|
com12 |
|
| 42 |
39 41
|
biimtrid |
|
| 43 |
38 42
|
ax-mp |
|
| 44 |
37 43
|
biimtrdi |
|
| 45 |
23 44
|
biimtrdi |
|
| 46 |
45
|
impcomd |
|
| 47 |
46
|
com12 |
|
| 48 |
17 47
|
biimtrdi |
|
| 49 |
48
|
expd |
|
| 50 |
49
|
com34 |
|
| 51 |
50
|
eqcoms |
|
| 52 |
51
|
com14 |
|
| 53 |
52
|
imp31 |
|
| 54 |
53
|
ad2antrl |
|
| 55 |
13 54
|
sylbid |
|
| 56 |
55
|
expimpd |
|
| 57 |
|
2a1 |
|
| 58 |
56 57
|
pm2.61ine |
|
| 59 |
58
|
pm4.71d |
|
| 60 |
|
nnre |
|
| 61 |
60
|
adantl |
|
| 62 |
|
nnre |
|
| 63 |
|
ltlen |
|
| 64 |
61 62 63
|
syl2an |
|
| 65 |
64
|
bibi2d |
|
| 66 |
65
|
adantr |
|
| 67 |
59 66
|
mpbird |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
pm5.32rd |
|
| 70 |
69
|
reubidva |
|
| 71 |
70
|
reubidva |
|
| 72 |
1 71
|
mpbid |
|