Metamath Proof Explorer


Theorem 2mulprm

Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023)

Ref Expression
Assertion 2mulprm A 2 A A = 1

Proof

Step Hyp Ref Expression
1 zre A A
2 0red A 0
3 1 2 leloed A A 0 A < 0 A = 0
4 prmnn 2 A 2 A
5 nnnn0 2 A 2 A 0
6 nn0ge0 2 A 0 0 2 A
7 2pos 0 < 2
8 7 a1i A 0 < 2
9 8 anim1i A A < 0 0 < 2 A < 0
10 9 olcd A A < 0 2 < 0 0 < A 0 < 2 A < 0
11 2re 2
12 11 a1i A A < 0 2
13 1 adantr A A < 0 A
14 12 13 mul2lt0bi A A < 0 2 A < 0 2 < 0 0 < A 0 < 2 A < 0
15 10 14 mpbird A A < 0 2 A < 0
16 12 13 remulcld A A < 0 2 A
17 0red A A < 0 0
18 16 17 ltnled A A < 0 2 A < 0 ¬ 0 2 A
19 15 18 mpbid A A < 0 ¬ 0 2 A
20 19 ex A A < 0 ¬ 0 2 A
21 20 con2d A 0 2 A ¬ A < 0
22 21 com12 0 2 A A ¬ A < 0
23 6 22 syl 2 A 0 A ¬ A < 0
24 4 5 23 3syl 2 A A ¬ A < 0
25 24 com12 A 2 A ¬ A < 0
26 25 con2d A A < 0 ¬ 2 A
27 26 a1dd A A < 0 ¬ A = 1 ¬ 2 A
28 oveq2 A = 0 2 A = 2 0
29 2t0e0 2 0 = 0
30 28 29 eqtrdi A = 0 2 A = 0
31 0nprm ¬ 0
32 31 a1i A = 0 ¬ 0
33 30 32 eqneltrd A = 0 ¬ 2 A
34 33 a1i13 A A = 0 ¬ A = 1 ¬ 2 A
35 27 34 jaod A A < 0 A = 0 ¬ A = 1 ¬ 2 A
36 3 35 sylbid A A 0 ¬ A = 1 ¬ 2 A
37 2z 2
38 uzid 2 2 2
39 37 38 ax-mp 2 2
40 37 a1i A 1 A ¬ A = 1 2
41 simp1 A 1 A ¬ A = 1 A
42 df-ne A 1 ¬ A = 1
43 1red A 1
44 43 1 ltlend A 1 < A 1 A A 1
45 1zzd A 1
46 zltp1le 1 A 1 < A 1 + 1 A
47 45 46 mpancom A 1 < A 1 + 1 A
48 47 biimpd A 1 < A 1 + 1 A
49 df-2 2 = 1 + 1
50 49 breq1i 2 A 1 + 1 A
51 48 50 syl6ibr A 1 < A 2 A
52 44 51 sylbird A 1 A A 1 2 A
53 52 expdimp A 1 A A 1 2 A
54 42 53 syl5bir A 1 A ¬ A = 1 2 A
55 54 3impia A 1 A ¬ A = 1 2 A
56 eluz2 A 2 2 A 2 A
57 40 41 55 56 syl3anbrc A 1 A ¬ A = 1 A 2
58 nprm 2 2 A 2 ¬ 2 A
59 39 57 58 sylancr A 1 A ¬ A = 1 ¬ 2 A
60 59 3exp A 1 A ¬ A = 1 ¬ 2 A
61 zle0orge1 A A 0 1 A
62 36 60 61 mpjaod A ¬ A = 1 ¬ 2 A
63 62 con4d A 2 A A = 1
64 oveq2 A = 1 2 A = 2 1
65 2t1e2 2 1 = 2
66 64 65 eqtrdi A = 1 2 A = 2
67 2prm 2
68 66 67 eqeltrdi A = 1 2 A
69 63 68 impbid1 A 2 A A = 1