Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2mulprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | 0red | |
|
3 | 1 2 | leloed | |
4 | prmnn | |
|
5 | nnnn0 | |
|
6 | nn0ge0 | |
|
7 | 2pos | |
|
8 | 7 | a1i | |
9 | 8 | anim1i | |
10 | 9 | olcd | |
11 | 2re | |
|
12 | 11 | a1i | |
13 | 1 | adantr | |
14 | 12 13 | mul2lt0bi | |
15 | 10 14 | mpbird | |
16 | 12 13 | remulcld | |
17 | 0red | |
|
18 | 16 17 | ltnled | |
19 | 15 18 | mpbid | |
20 | 19 | ex | |
21 | 20 | con2d | |
22 | 21 | com12 | |
23 | 6 22 | syl | |
24 | 4 5 23 | 3syl | |
25 | 24 | com12 | |
26 | 25 | con2d | |
27 | 26 | a1dd | |
28 | oveq2 | |
|
29 | 2t0e0 | |
|
30 | 28 29 | eqtrdi | |
31 | 0nprm | |
|
32 | 31 | a1i | |
33 | 30 32 | eqneltrd | |
34 | 33 | a1i13 | |
35 | 27 34 | jaod | |
36 | 3 35 | sylbid | |
37 | 2z | |
|
38 | uzid | |
|
39 | 37 38 | ax-mp | |
40 | 37 | a1i | |
41 | simp1 | |
|
42 | df-ne | |
|
43 | 1red | |
|
44 | 43 1 | ltlend | |
45 | 1zzd | |
|
46 | zltp1le | |
|
47 | 45 46 | mpancom | |
48 | 47 | biimpd | |
49 | df-2 | |
|
50 | 49 | breq1i | |
51 | 48 50 | imbitrrdi | |
52 | 44 51 | sylbird | |
53 | 52 | expdimp | |
54 | 42 53 | biimtrrid | |
55 | 54 | 3impia | |
56 | eluz2 | |
|
57 | 40 41 55 56 | syl3anbrc | |
58 | nprm | |
|
59 | 39 57 58 | sylancr | |
60 | 59 | 3exp | |
61 | zle0orge1 | |
|
62 | 36 60 61 | mpjaod | |
63 | 62 | con4d | |
64 | oveq2 | |
|
65 | 2t1e2 | |
|
66 | 64 65 | eqtrdi | |
67 | 2prm | |
|
68 | 66 67 | eqeltrdi | |
69 | 63 68 | impbid1 | |