Metamath Proof Explorer


Theorem 2mulprm

Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023)

Ref Expression
Assertion 2mulprm A2AA=1

Proof

Step Hyp Ref Expression
1 zre AA
2 0red A0
3 1 2 leloed AA0A<0A=0
4 prmnn 2A2A
5 nnnn0 2A2A0
6 nn0ge0 2A002A
7 2pos 0<2
8 7 a1i A0<2
9 8 anim1i AA<00<2A<0
10 9 olcd AA<02<00<A0<2A<0
11 2re 2
12 11 a1i AA<02
13 1 adantr AA<0A
14 12 13 mul2lt0bi AA<02A<02<00<A0<2A<0
15 10 14 mpbird AA<02A<0
16 12 13 remulcld AA<02A
17 0red AA<00
18 16 17 ltnled AA<02A<0¬02A
19 15 18 mpbid AA<0¬02A
20 19 ex AA<0¬02A
21 20 con2d A02A¬A<0
22 21 com12 02AA¬A<0
23 6 22 syl 2A0A¬A<0
24 4 5 23 3syl 2AA¬A<0
25 24 com12 A2A¬A<0
26 25 con2d AA<0¬2A
27 26 a1dd AA<0¬A=1¬2A
28 oveq2 A=02A=20
29 2t0e0 20=0
30 28 29 eqtrdi A=02A=0
31 0nprm ¬0
32 31 a1i A=0¬0
33 30 32 eqneltrd A=0¬2A
34 33 a1i13 AA=0¬A=1¬2A
35 27 34 jaod AA<0A=0¬A=1¬2A
36 3 35 sylbid AA0¬A=1¬2A
37 2z 2
38 uzid 222
39 37 38 ax-mp 22
40 37 a1i A1A¬A=12
41 simp1 A1A¬A=1A
42 df-ne A1¬A=1
43 1red A1
44 43 1 ltlend A1<A1AA1
45 1zzd A1
46 zltp1le 1A1<A1+1A
47 45 46 mpancom A1<A1+1A
48 47 biimpd A1<A1+1A
49 df-2 2=1+1
50 49 breq1i 2A1+1A
51 48 50 imbitrrdi A1<A2A
52 44 51 sylbird A1AA12A
53 52 expdimp A1AA12A
54 42 53 biimtrrid A1A¬A=12A
55 54 3impia A1A¬A=12A
56 eluz2 A22A2A
57 40 41 55 56 syl3anbrc A1A¬A=1A2
58 nprm 22A2¬2A
59 39 57 58 sylancr A1A¬A=1¬2A
60 59 3exp A1A¬A=1¬2A
61 zle0orge1 AA01A
62 36 60 61 mpjaod A¬A=1¬2A
63 62 con4d A2AA=1
64 oveq2 A=12A=21
65 2t1e2 21=2
66 64 65 eqtrdi A=12A=2
67 2prm 2
68 66 67 eqeltrdi A=12A
69 63 68 impbid1 A2AA=1