Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
5 |
|
simp121 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑅 ∈ 𝐴 ) |
6 |
|
simp122 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑆 ∈ 𝐴 ) |
7 |
5 6
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) |
8 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) |
9 |
4 7 8
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ) |
10 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
11 |
9 10
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ) |
12 |
|
simp3lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
13 |
|
simp3rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
14 |
|
simp3rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
15 |
|
simp111 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝐾 ∈ HL ) |
16 |
15
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝐾 ∈ Lat ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
17 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
19 |
5 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
20 |
17 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
21 |
6 20
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simp123 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑇 ∈ 𝐴 ) |
23 |
|
simp131 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑈 ∈ 𝐴 ) |
24 |
17 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
15 22 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
|
simp132 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑉 ∈ 𝐴 ) |
27 |
|
simp133 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑊 ∈ 𝐴 ) |
28 |
17 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
15 26 27 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
17 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
16 25 29 30
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
17 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
33 |
16 19 21 31 32
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
34 |
13 14 33
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
35 |
|
simp113 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑄 ∈ 𝐴 ) |
36 |
17 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
38 |
17 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
15 5 6 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
17 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑄 ∨ ( 𝑅 ∨ 𝑆 ) ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
41 |
16 37 39 31 40
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑄 ∨ ( 𝑅 ∨ 𝑆 ) ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
42 |
12 34 41
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑄 ∨ ( 𝑅 ∨ 𝑆 ) ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
43 |
|
simp3ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
44 |
|
simp112 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → 𝑃 ∈ 𝐴 ) |
45 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) |
46 |
1 2 3
|
4atlem12a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) → ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ↔ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
47 |
15 44 22 8 45 46
|
syl311anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ↔ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
48 |
43 47
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
49 |
42 48
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( 𝑄 ∨ ( 𝑅 ∨ 𝑆 ) ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
50 |
1 2 3
|
4atlem11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑄 ∨ ( 𝑅 ∨ 𝑆 ) ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
51 |
11 49 50
|
sylc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
52 |
51 48
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑃 ≤ ( ( 𝑈 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( ( 𝑃 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑄 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |