Step |
Hyp |
Ref |
Expression |
1 |
|
addsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑥 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑥 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) } ) ) ) |
2 |
|
addsfn |
⊢ +s Fn ( No × No ) |
3 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) ⊆ No ) |
5 |
|
snssi |
⊢ ( 𝐵 ∈ No → { 𝐵 } ⊆ No ) |
6 |
|
xpss12 |
⊢ ( ( ( L ‘ 𝐴 ) ⊆ No ∧ { 𝐵 } ⊆ No ) → ( ( L ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( L ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) |
8 |
|
ovelimab |
⊢ ( ( +s Fn ( No × No ) ∧ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) → ( 𝑥 ∈ ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑟 ∈ { 𝐵 } 𝑥 = ( 𝑙 +s 𝑟 ) ) ) |
9 |
2 7 8
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑥 ∈ ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑟 ∈ { 𝐵 } 𝑥 = ( 𝑙 +s 𝑟 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑟 = 𝐵 → ( 𝑙 +s 𝑟 ) = ( 𝑙 +s 𝐵 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑟 = 𝐵 → ( 𝑥 = ( 𝑙 +s 𝑟 ) ↔ 𝑥 = ( 𝑙 +s 𝐵 ) ) ) |
12 |
11
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑟 ∈ { 𝐵 } 𝑥 = ( 𝑙 +s 𝑟 ) ↔ 𝑥 = ( 𝑙 +s 𝐵 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑟 ∈ { 𝐵 } 𝑥 = ( 𝑙 +s 𝑟 ) ↔ 𝑥 = ( 𝑙 +s 𝐵 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑟 ∈ { 𝐵 } 𝑥 = ( 𝑙 +s 𝑟 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) ) ) |
15 |
9 14
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑥 ∈ ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) ) ) |
16 |
15
|
abbi2dv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) = { 𝑥 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) } ) |
17 |
|
snssi |
⊢ ( 𝐴 ∈ No → { 𝐴 } ⊆ No ) |
18 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
19 |
18
|
a1i |
⊢ ( 𝐵 ∈ No → ( L ‘ 𝐵 ) ⊆ No ) |
20 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ No ∧ ( L ‘ 𝐵 ) ⊆ No ) → ( { 𝐴 } × ( L ‘ 𝐵 ) ) ⊆ ( No × No ) ) |
21 |
17 19 20
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝐴 } × ( L ‘ 𝐵 ) ) ⊆ ( No × No ) ) |
22 |
|
ovelimab |
⊢ ( ( +s Fn ( No × No ) ∧ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ⊆ ( No × No ) ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝑟 +s 𝑙 ) ) ) |
23 |
2 21 22
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝑟 +s 𝑙 ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 +s 𝑙 ) = ( 𝐴 +s 𝑙 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑟 = 𝐴 → ( 𝑦 = ( 𝑟 +s 𝑙 ) ↔ 𝑦 = ( 𝐴 +s 𝑙 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑟 = 𝐴 → ( ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝑟 +s 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) ) ) |
27 |
26
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝑟 +s 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝑟 +s 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) ) ) |
29 |
23 28
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) ) ) |
30 |
29
|
abbi2dv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) } ) |
31 |
16 30
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ) = ( { 𝑥 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) } ) ) |
32 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
33 |
32
|
a1i |
⊢ ( 𝐴 ∈ No → ( R ‘ 𝐴 ) ⊆ No ) |
34 |
|
xpss12 |
⊢ ( ( ( R ‘ 𝐴 ) ⊆ No ∧ { 𝐵 } ⊆ No ) → ( ( R ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) |
35 |
33 5 34
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( R ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) |
36 |
|
ovelimab |
⊢ ( ( +s Fn ( No × No ) ∧ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ⊆ ( No × No ) ) → ( 𝑥 ∈ ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑙 ∈ { 𝐵 } 𝑥 = ( 𝑟 +s 𝑙 ) ) ) |
37 |
2 35 36
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑥 ∈ ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑙 ∈ { 𝐵 } 𝑥 = ( 𝑟 +s 𝑙 ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑙 = 𝐵 → ( 𝑟 +s 𝑙 ) = ( 𝑟 +s 𝐵 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑙 = 𝐵 → ( 𝑥 = ( 𝑟 +s 𝑙 ) ↔ 𝑥 = ( 𝑟 +s 𝐵 ) ) ) |
40 |
39
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑙 ∈ { 𝐵 } 𝑥 = ( 𝑟 +s 𝑙 ) ↔ 𝑥 = ( 𝑟 +s 𝐵 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑙 ∈ { 𝐵 } 𝑥 = ( 𝑟 +s 𝑙 ) ↔ 𝑥 = ( 𝑟 +s 𝐵 ) ) ) |
42 |
41
|
rexbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑙 ∈ { 𝐵 } 𝑥 = ( 𝑟 +s 𝑙 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) ) ) |
43 |
37 42
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑥 ∈ ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) ) ) |
44 |
43
|
abbi2dv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) = { 𝑥 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) } ) |
45 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
46 |
45
|
a1i |
⊢ ( 𝐵 ∈ No → ( R ‘ 𝐵 ) ⊆ No ) |
47 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ No ∧ ( R ‘ 𝐵 ) ⊆ No ) → ( { 𝐴 } × ( R ‘ 𝐵 ) ) ⊆ ( No × No ) ) |
48 |
17 46 47
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝐴 } × ( R ‘ 𝐵 ) ) ⊆ ( No × No ) ) |
49 |
|
ovelimab |
⊢ ( ( +s Fn ( No × No ) ∧ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ⊆ ( No × No ) ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ↔ ∃ 𝑙 ∈ { 𝐴 } ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝑙 +s 𝑟 ) ) ) |
50 |
2 48 49
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ↔ ∃ 𝑙 ∈ { 𝐴 } ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝑙 +s 𝑟 ) ) ) |
51 |
|
oveq1 |
⊢ ( 𝑙 = 𝐴 → ( 𝑙 +s 𝑟 ) = ( 𝐴 +s 𝑟 ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑙 = 𝐴 → ( 𝑦 = ( 𝑙 +s 𝑟 ) ↔ 𝑦 = ( 𝐴 +s 𝑟 ) ) ) |
53 |
52
|
rexbidv |
⊢ ( 𝑙 = 𝐴 → ( ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝑙 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) ) ) |
54 |
53
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑙 ∈ { 𝐴 } ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝑙 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑙 ∈ { 𝐴 } ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝑙 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) ) ) |
56 |
50 55
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑦 ∈ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) ) ) |
57 |
56
|
abbi2dv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) } ) |
58 |
44 57
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ) = ( { 𝑥 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) } ) ) |
59 |
31 58
|
oveq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ) |s ( ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ) ) = ( ( { 𝑥 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑥 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑥 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑦 = ( 𝐴 +s 𝑟 ) } ) ) ) |
60 |
1 59
|
eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( ( +s “ ( ( L ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( L ‘ 𝐵 ) ) ) ) |s ( ( +s “ ( ( R ‘ 𝐴 ) × { 𝐵 } ) ) ∪ ( +s “ ( { 𝐴 } × ( R ‘ 𝐵 ) ) ) ) ) ) |