| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atantayl3.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 2 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 4 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | pncan | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 )  =  ( ( 2  ·  𝑛 )  /  2 ) ) | 
						
							| 11 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℂ ) | 
						
							| 13 |  | 2cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 14 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  2  ≠  0 ) | 
						
							| 16 | 12 13 15 | divcan3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 17 | 10 16 | eqtr2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  =  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ 𝑛 )  =  ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑛 )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 20 | 19 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 21 | 1 20 | eqtrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 22 | 21 | seqeq3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  𝐹 )  =  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 24 | 23 | atantayl2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ 𝐴 ) ) | 
						
							| 25 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 26 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 27 | 25 3 26 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 29 |  | peano2nn0 | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0 ) | 
						
							| 30 | 5 29 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0 ) | 
						
							| 31 | 28 30 | expcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 32 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 33 | 5 32 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 34 | 33 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 35 | 33 | nnne0d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 36 | 31 34 35 | divcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 37 | 27 36 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑛 )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 38 | 19 37 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑘  −  1 )  =  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( ( 𝑘  −  1 )  /  2 )  =  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  =  ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝐴 ↑ 𝑘 )  =  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 43 |  | id | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  𝑘  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 44 | 42 43 | oveq12d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 )  =  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 45 | 41 44 | oveq12d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 ) )  =  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 46 | 38 45 | iserodd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  ⇝  ( arctan ‘ 𝐴 )  ↔  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ 𝐴 ) ) ) | 
						
							| 47 | 24 46 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  ·  ( ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  ⇝  ( arctan ‘ 𝐴 ) ) | 
						
							| 48 | 22 47 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  𝐹 )  ⇝  ( arctan ‘ 𝐴 ) ) |