Step |
Hyp |
Ref |
Expression |
1 |
|
cbvproddavw2.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
cbvproddavw2.2 |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑘 ) → 𝐶 = 𝐷 ) |
3 |
1
|
sseq1d |
⊢ ( 𝜑 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑘 ) → 𝐴 = 𝐵 ) |
6 |
4 5
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑘 ) → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) |
7 |
6 2
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑘 ) → if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) = if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) |
8 |
7
|
cbvmptdavw |
⊢ ( 𝜑 → ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) |
9 |
8
|
seqeq3d |
⊢ ( 𝜑 → seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ) |
10 |
9
|
breq1d |
⊢ ( 𝜑 → ( seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ↔ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
12 |
11
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
14 |
8
|
seqeq3d |
⊢ ( 𝜑 → seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ) |
15 |
14
|
breq1d |
⊢ ( 𝜑 → ( seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ) |
16 |
3 13 15
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ) ) |
18 |
1
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ) ) |
19 |
2
|
cbvcsbdavw |
⊢ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 = ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) |
21 |
20
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ↔ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) |
24 |
18 23
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) |
25 |
24
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) |
27 |
17 26
|
orbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) ) |
28 |
27
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) ) |
29 |
|
df-prod |
⊢ ∏ 𝑗 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
30 |
|
df-prod |
⊢ ∏ 𝑘 ∈ 𝐵 𝐷 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐷 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐷 ) ) ‘ 𝑚 ) ) ) ) |
31 |
28 29 30
|
3eqtr4g |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐷 ) |