Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme12.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme12.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme12.g |
⊢ 𝐺 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ Lat ) |
12 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ 𝐴 ) |
13 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ∈ 𝐴 ) |
14 |
9 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
10 12 13 14
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑊 ∈ 𝐻 ) |
17 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ∈ 𝐴 ) |
18 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ∈ 𝐴 ) |
19 |
1 2 3 4 5 6 7 9
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
20 |
10 16 17 18 12 19
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
21 |
1 2 3 4 5 6 8 9
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
22 |
10 16 17 18 13 21
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
23 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
11 20 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝐹 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
9 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝐹 ∨ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
11 15 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝐹 ∨ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
9 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
10 13 17 27
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑇 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
9 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
30 |
18 29
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
31 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
11 22 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝐺 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
9 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
11 28 32 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
9 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
10 17 12 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
37 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
11 30 20 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑄 ∨ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
9 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
11 36 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
11 34 40 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
9 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
44 |
16 43
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
45 |
1 2 3 4 5 6 7 8
|
cdleme14 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝐹 ∨ 𝐺 ) ) ≤ ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) ) |
46 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
47 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) |
48 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) = ( ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) ) |
49 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
50 |
48 49
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) = ( ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
51 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ≤ 𝑊 ) |
52 |
50 51
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑇 ∨ 𝑃 ) ∧ ( 𝐺 ∨ 𝑄 ) ) ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝐹 ) ) ) ≤ 𝑊 ) |
53 |
9 1 11 26 42 44 45 52
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝐹 ∨ 𝐺 ) ) ≤ 𝑊 ) |