| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat1d.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chpmat1d.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
chpmat1d.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
chpmat1d.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 5 |
|
chpmat1d.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
chpmat1d.z |
⊢ − = ( -g ‘ 𝑃 ) |
| 7 |
|
chpmat1d.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 8 |
|
chpmat1dlem.g |
⊢ 𝐺 = ( 𝑁 Mat 𝑃 ) |
| 9 |
|
chpmat1dlem.x |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 10 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 12 |
|
snfi |
⊢ { 𝐼 } ∈ Fin |
| 13 |
|
eleq1 |
⊢ ( 𝑁 = { 𝐼 } → ( 𝑁 ∈ Fin ↔ { 𝐼 } ∈ Fin ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( 𝑁 = { 𝐼 } → 𝑁 ∈ Fin ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
| 16 |
10 15
|
anim12i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ) → ( 𝑃 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑃 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
| 18 |
17
|
ancomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 19 |
8
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐺 ∈ LMod ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ LMod ) |
| 21 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 23 |
5 21 22
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 25 |
15
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 26 |
|
fvex |
⊢ ( Poly1 ‘ 𝑅 ) ∈ V |
| 27 |
2
|
oveq2i |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat ( Poly1 ‘ 𝑅 ) ) |
| 28 |
8 27
|
eqtri |
⊢ 𝐺 = ( 𝑁 Mat ( Poly1 ‘ 𝑅 ) ) |
| 29 |
28
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ ( Poly1 ‘ 𝑅 ) ∈ V ) → ( Poly1 ‘ 𝑅 ) = ( Scalar ‘ 𝐺 ) ) |
| 30 |
25 26 29
|
sylancl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Poly1 ‘ 𝑅 ) = ( Scalar ‘ 𝐺 ) ) |
| 31 |
30
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝐺 ) = ( Poly1 ‘ 𝑅 ) ) |
| 32 |
31
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 33 |
24 32
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ) |
| 34 |
8
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐺 ∈ Ring ) |
| 35 |
18 34
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ Ring ) |
| 36 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 37 |
|
eqid |
⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) |
| 38 |
36 37
|
ringidcl |
⊢ ( 𝐺 ∈ Ring → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 39 |
35 38
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 40 |
20 33 39
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐺 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 41 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
| 42 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) |
| 43 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝐺 ) ) |
| 44 |
36 41 42 43
|
lmodvscl |
⊢ ( ( 𝐺 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 45 |
40 44
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 46 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 47 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
| 48 |
25 46 47
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ) |
| 49 |
9 3 4 2 8
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝐺 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝐺 ) ) |
| 51 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ { 𝐼 } ) |
| 53 |
|
eleq2 |
⊢ ( 𝑁 = { 𝐼 } → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) |
| 55 |
52 54
|
mpbird |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑁 ) |
| 56 |
|
id |
⊢ ( 𝐼 ∈ 𝑁 → 𝐼 ∈ 𝑁 ) |
| 57 |
55 56
|
jccir |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ) ) |
| 58 |
57
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ) ) |
| 59 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 60 |
8 36 59 6
|
matsubgcell |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ) ) → ( 𝐼 ( ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ( -g ‘ 𝐺 ) ( 𝑇 ‘ 𝑀 ) ) 𝐼 ) = ( ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) − ( 𝐼 ( 𝑇 ‘ 𝑀 ) 𝐼 ) ) ) |
| 61 |
11 45 50 58 60
|
syl121anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ( -g ‘ 𝐺 ) ( 𝑇 ‘ 𝑀 ) ) 𝐼 ) = ( ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) − ( 𝐼 ( 𝑇 ‘ 𝑀 ) 𝐼 ) ) ) |
| 62 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 63 |
5 2 62
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 64 |
63
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 65 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 66 |
8 36 62 42 65
|
matvscacell |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 𝐼 ( 1r ‘ 𝐺 ) 𝐼 ) ) ) |
| 67 |
11 64 39 58 66
|
syl121anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 𝐼 ( 1r ‘ 𝐺 ) 𝐼 ) ) ) |
| 68 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 69 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 70 |
55
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ 𝑁 ) |
| 71 |
8 68 69 25 11 70 70 37
|
mat1ov |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( 1r ‘ 𝐺 ) 𝐼 ) = if ( 𝐼 = 𝐼 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) |
| 72 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 = 𝐼 ) |
| 73 |
72
|
iftrued |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → if ( 𝐼 = 𝐼 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = ( 1r ‘ 𝑃 ) ) |
| 74 |
71 73
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( 1r ‘ 𝐺 ) 𝐼 ) = ( 1r ‘ 𝑃 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 𝐼 ( 1r ‘ 𝐺 ) 𝐼 ) ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 76 |
62 65 68
|
ringridm |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑋 ) |
| 77 |
11 64 76
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑋 ) |
| 78 |
67 75 77
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) = 𝑋 ) |
| 79 |
9 3 4 2 7
|
mat2pmatvalel |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑇 ‘ 𝑀 ) 𝐼 ) = ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) |
| 80 |
48 58 79
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( 𝑇 ‘ 𝑀 ) 𝐼 ) = ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) |
| 81 |
78 80
|
oveq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝐼 ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) 𝐼 ) − ( 𝐼 ( 𝑇 ‘ 𝑀 ) 𝐼 ) ) = ( 𝑋 − ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) |
| 82 |
61 81
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ( ( 𝑋 ( ·𝑠 ‘ 𝐺 ) ( 1r ‘ 𝐺 ) ) ( -g ‘ 𝐺 ) ( 𝑇 ‘ 𝑀 ) ) 𝐼 ) = ( 𝑋 − ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) ) |