| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmat1d.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpmat1d.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpmat1d.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpmat1d.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | chpmat1d.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | chpmat1d.z |  |-  .- = ( -g ` P ) | 
						
							| 7 |  | chpmat1d.s |  |-  S = ( algSc ` P ) | 
						
							| 8 |  | chpmat1dlem.g |  |-  G = ( N Mat P ) | 
						
							| 9 |  | chpmat1dlem.x |  |-  T = ( N matToPolyMat R ) | 
						
							| 10 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. Ring ) | 
						
							| 12 |  | snfi |  |-  { I } e. Fin | 
						
							| 13 |  | eleq1 |  |-  ( N = { I } -> ( N e. Fin <-> { I } e. Fin ) ) | 
						
							| 14 | 12 13 | mpbiri |  |-  ( N = { I } -> N e. Fin ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N = { I } /\ I e. V ) -> N e. Fin ) | 
						
							| 16 | 10 15 | anim12i |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) ) -> ( P e. Ring /\ N e. Fin ) ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( P e. Ring /\ N e. Fin ) ) | 
						
							| 18 | 17 | ancomd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 19 | 8 | matlmod |  |-  ( ( N e. Fin /\ P e. Ring ) -> G e. LMod ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> G e. LMod ) | 
						
							| 21 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) | 
						
							| 23 | 5 21 22 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 25 | 15 | 3ad2ant2 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N e. Fin ) | 
						
							| 26 |  | fvex |  |-  ( Poly1 ` R ) e. _V | 
						
							| 27 | 2 | oveq2i |  |-  ( N Mat P ) = ( N Mat ( Poly1 ` R ) ) | 
						
							| 28 | 8 27 | eqtri |  |-  G = ( N Mat ( Poly1 ` R ) ) | 
						
							| 29 | 28 | matsca2 |  |-  ( ( N e. Fin /\ ( Poly1 ` R ) e. _V ) -> ( Poly1 ` R ) = ( Scalar ` G ) ) | 
						
							| 30 | 25 26 29 | sylancl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) = ( Scalar ` G ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Scalar ` G ) = ( Poly1 ` R ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( Scalar ` G ) ) = ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 33 | 24 32 | eleqtrrd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` ( Scalar ` G ) ) ) | 
						
							| 34 | 8 | matring |  |-  ( ( N e. Fin /\ P e. Ring ) -> G e. Ring ) | 
						
							| 35 | 18 34 | syl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> G e. Ring ) | 
						
							| 36 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 37 |  | eqid |  |-  ( 1r ` G ) = ( 1r ` G ) | 
						
							| 38 | 36 37 | ringidcl |  |-  ( G e. Ring -> ( 1r ` G ) e. ( Base ` G ) ) | 
						
							| 39 | 35 38 | syl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( 1r ` G ) e. ( Base ` G ) ) | 
						
							| 40 | 20 33 39 | 3jca |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( G e. LMod /\ X e. ( Base ` ( Scalar ` G ) ) /\ ( 1r ` G ) e. ( Base ` G ) ) ) | 
						
							| 41 |  | eqid |  |-  ( Scalar ` G ) = ( Scalar ` G ) | 
						
							| 42 |  | eqid |  |-  ( .s ` G ) = ( .s ` G ) | 
						
							| 43 |  | eqid |  |-  ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` G ) ) | 
						
							| 44 | 36 41 42 43 | lmodvscl |  |-  ( ( G e. LMod /\ X e. ( Base ` ( Scalar ` G ) ) /\ ( 1r ` G ) e. ( Base ` G ) ) -> ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) ) | 
						
							| 45 | 40 44 | syl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) ) | 
						
							| 46 |  | simp1 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) | 
						
							| 47 |  | simp3 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. B ) | 
						
							| 48 | 25 46 47 | 3jca |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) ) | 
						
							| 49 | 9 3 4 2 8 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` G ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( T ` M ) e. ( Base ` G ) ) | 
						
							| 51 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 52 | 51 | adantl |  |-  ( ( N = { I } /\ I e. V ) -> I e. { I } ) | 
						
							| 53 |  | eleq2 |  |-  ( N = { I } -> ( I e. N <-> I e. { I } ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( N = { I } /\ I e. V ) -> ( I e. N <-> I e. { I } ) ) | 
						
							| 55 | 52 54 | mpbird |  |-  ( ( N = { I } /\ I e. V ) -> I e. N ) | 
						
							| 56 |  | id |  |-  ( I e. N -> I e. N ) | 
						
							| 57 | 55 56 | jccir |  |-  ( ( N = { I } /\ I e. V ) -> ( I e. N /\ I e. N ) ) | 
						
							| 58 | 57 | 3ad2ant2 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N ) ) | 
						
							| 59 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 60 | 8 36 59 6 | matsubgcell |  |-  ( ( P e. Ring /\ ( ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) /\ ( T ` M ) e. ( Base ` G ) ) /\ ( I e. N /\ I e. N ) ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) ) | 
						
							| 61 | 11 45 50 58 60 | syl121anc |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) ) | 
						
							| 62 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 63 | 5 2 62 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 64 | 63 | 3ad2ant1 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` P ) ) | 
						
							| 65 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 66 | 8 36 62 42 65 | matvscacell |  |-  ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ ( 1r ` G ) e. ( Base ` G ) ) /\ ( I e. N /\ I e. N ) ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) ) | 
						
							| 67 | 11 64 39 58 66 | syl121anc |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) ) | 
						
							| 68 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 69 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 70 | 55 | 3ad2ant2 |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. N ) | 
						
							| 71 | 8 68 69 25 11 70 70 37 | mat1ov |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( 1r ` G ) I ) = if ( I = I , ( 1r ` P ) , ( 0g ` P ) ) ) | 
						
							| 72 |  | eqidd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I = I ) | 
						
							| 73 | 72 | iftrued |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> if ( I = I , ( 1r ` P ) , ( 0g ` P ) ) = ( 1r ` P ) ) | 
						
							| 74 | 71 73 | eqtrd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( 1r ` G ) I ) = ( 1r ` P ) ) | 
						
							| 75 | 74 | oveq2d |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) = ( X ( .r ` P ) ( 1r ` P ) ) ) | 
						
							| 76 | 62 65 68 | ringridm |  |-  ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) | 
						
							| 77 | 11 64 76 | syl2anc |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) | 
						
							| 78 | 67 75 77 | 3eqtrd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = X ) | 
						
							| 79 | 9 3 4 2 7 | mat2pmatvalel |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( I e. N /\ I e. N ) ) -> ( I ( T ` M ) I ) = ( S ` ( I M I ) ) ) | 
						
							| 80 | 48 58 79 | syl2anc |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( T ` M ) I ) = ( S ` ( I M I ) ) ) | 
						
							| 81 | 78 80 | oveq12d |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) = ( X .- ( S ` ( I M I ) ) ) ) | 
						
							| 82 | 61 81 | eqtrd |  |-  ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |