| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat1d.c |
|- C = ( N CharPlyMat R ) |
| 2 |
|
chpmat1d.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
chpmat1d.a |
|- A = ( N Mat R ) |
| 4 |
|
chpmat1d.b |
|- B = ( Base ` A ) |
| 5 |
|
chpmat1d.x |
|- X = ( var1 ` R ) |
| 6 |
|
chpmat1d.z |
|- .- = ( -g ` P ) |
| 7 |
|
chpmat1d.s |
|- S = ( algSc ` P ) |
| 8 |
|
snfi |
|- { I } e. Fin |
| 9 |
|
eleq1 |
|- ( N = { I } -> ( N e. Fin <-> { I } e. Fin ) ) |
| 10 |
8 9
|
mpbiri |
|- ( N = { I } -> N e. Fin ) |
| 11 |
10
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> N e. Fin ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N e. Fin ) |
| 13 |
|
simp1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. CRing ) |
| 14 |
|
simp3 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. B ) |
| 15 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
| 16 |
|
eqid |
|- ( N maDet P ) = ( N maDet P ) |
| 17 |
|
eqid |
|- ( -g ` ( N Mat P ) ) = ( -g ` ( N Mat P ) ) |
| 18 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
| 19 |
|
eqid |
|- ( .s ` ( N Mat P ) ) = ( .s ` ( N Mat P ) ) |
| 20 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
| 21 |
|
eqid |
|- ( 1r ` ( N Mat P ) ) = ( 1r ` ( N Mat P ) ) |
| 22 |
1 3 4 2 15 16 17 18 19 20 21
|
chpmatval |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) |
| 23 |
12 13 14 22
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) |
| 24 |
2
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. CRing ) |
| 26 |
|
simp2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N = { I } /\ I e. V ) ) |
| 27 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 28 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 29 |
27 28
|
syl |
|- ( R e. CRing -> P e. Ring ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. Ring ) |
| 31 |
15
|
matring |
|- ( ( N e. Fin /\ P e. Ring ) -> ( N Mat P ) e. Ring ) |
| 32 |
12 30 31
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. Ring ) |
| 33 |
|
ringgrp |
|- ( ( N Mat P ) e. Ring -> ( N Mat P ) e. Grp ) |
| 34 |
32 33
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. Grp ) |
| 35 |
15
|
matlmod |
|- ( ( N e. Fin /\ P e. Ring ) -> ( N Mat P ) e. LMod ) |
| 36 |
12 30 35
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. LMod ) |
| 37 |
27
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) |
| 38 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 39 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 40 |
18 38 39
|
vr1cl |
|- ( R e. Ring -> ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) |
| 41 |
37 40
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) |
| 42 |
38
|
ply1crng |
|- ( R e. CRing -> ( Poly1 ` R ) e. CRing ) |
| 43 |
42
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) e. CRing ) |
| 44 |
2
|
oveq2i |
|- ( N Mat P ) = ( N Mat ( Poly1 ` R ) ) |
| 45 |
44
|
matsca2 |
|- ( ( N e. Fin /\ ( Poly1 ` R ) e. CRing ) -> ( Poly1 ` R ) = ( Scalar ` ( N Mat P ) ) ) |
| 46 |
12 43 45
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) = ( Scalar ` ( N Mat P ) ) ) |
| 47 |
46
|
eqcomd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Scalar ` ( N Mat P ) ) = ( Poly1 ` R ) ) |
| 48 |
47
|
fveq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( Scalar ` ( N Mat P ) ) ) = ( Base ` ( Poly1 ` R ) ) ) |
| 49 |
41 48
|
eleqtrrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) e. ( Base ` ( Scalar ` ( N Mat P ) ) ) ) |
| 50 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
| 51 |
50 21
|
ringidcl |
|- ( ( N Mat P ) e. Ring -> ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) |
| 52 |
32 51
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) |
| 53 |
|
eqid |
|- ( Scalar ` ( N Mat P ) ) = ( Scalar ` ( N Mat P ) ) |
| 54 |
|
eqid |
|- ( Base ` ( Scalar ` ( N Mat P ) ) ) = ( Base ` ( Scalar ` ( N Mat P ) ) ) |
| 55 |
50 53 19 54
|
lmodvscl |
|- ( ( ( N Mat P ) e. LMod /\ ( var1 ` R ) e. ( Base ` ( Scalar ` ( N Mat P ) ) ) /\ ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) ) |
| 56 |
36 49 52 55
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) ) |
| 57 |
20 3 4 2 15
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) |
| 58 |
12 37 14 57
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) |
| 59 |
50 17
|
grpsubcl |
|- ( ( ( N Mat P ) e. Grp /\ ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) /\ ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
| 60 |
34 56 58 59
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
| 61 |
16 15 50
|
m1detdiag |
|- ( ( P e. CRing /\ ( N = { I } /\ I e. V ) /\ ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
| 62 |
25 26 60 61
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
| 63 |
5
|
eqcomi |
|- ( var1 ` R ) = X |
| 64 |
63
|
a1i |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) = X ) |
| 65 |
64
|
oveq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) = ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ) |
| 66 |
65
|
oveq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) = ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) |
| 67 |
66
|
oveqd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
| 68 |
1 2 3 4 5 6 7 15 20
|
chpmat1dlem |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
| 69 |
27 68
|
syl3an1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
| 70 |
67 69
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
| 71 |
62 70
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( X .- ( S ` ( I M I ) ) ) ) |
| 72 |
23 71
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( C ` M ) = ( X .- ( S ` ( I M I ) ) ) ) |