Metamath Proof Explorer


Theorem chpmat1d

Description: The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019)

Ref Expression
Hypotheses chpmat1d.c C = N CharPlyMat R
chpmat1d.p P = Poly 1 R
chpmat1d.a A = N Mat R
chpmat1d.b B = Base A
chpmat1d.x X = var 1 R
chpmat1d.z - ˙ = - P
chpmat1d.s S = algSc P
Assertion chpmat1d R CRing N = I I V M B C M = X - ˙ S I M I

Proof

Step Hyp Ref Expression
1 chpmat1d.c C = N CharPlyMat R
2 chpmat1d.p P = Poly 1 R
3 chpmat1d.a A = N Mat R
4 chpmat1d.b B = Base A
5 chpmat1d.x X = var 1 R
6 chpmat1d.z - ˙ = - P
7 chpmat1d.s S = algSc P
8 snfi I Fin
9 eleq1 N = I N Fin I Fin
10 8 9 mpbiri N = I N Fin
11 10 adantr N = I I V N Fin
12 11 3ad2ant2 R CRing N = I I V M B N Fin
13 simp1 R CRing N = I I V M B R CRing
14 simp3 R CRing N = I I V M B M B
15 eqid N Mat P = N Mat P
16 eqid N maDet P = N maDet P
17 eqid - N Mat P = - N Mat P
18 eqid var 1 R = var 1 R
19 eqid N Mat P = N Mat P
20 eqid N matToPolyMat R = N matToPolyMat R
21 eqid 1 N Mat P = 1 N Mat P
22 1 3 4 2 15 16 17 18 19 20 21 chpmatval N Fin R CRing M B C M = N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
23 12 13 14 22 syl3anc R CRing N = I I V M B C M = N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
24 2 ply1crng R CRing P CRing
25 24 3ad2ant1 R CRing N = I I V M B P CRing
26 simp2 R CRing N = I I V M B N = I I V
27 crngring R CRing R Ring
28 2 ply1ring R Ring P Ring
29 27 28 syl R CRing P Ring
30 29 3ad2ant1 R CRing N = I I V M B P Ring
31 15 matring N Fin P Ring N Mat P Ring
32 12 30 31 syl2anc R CRing N = I I V M B N Mat P Ring
33 ringgrp N Mat P Ring N Mat P Grp
34 32 33 syl R CRing N = I I V M B N Mat P Grp
35 15 matlmod N Fin P Ring N Mat P LMod
36 12 30 35 syl2anc R CRing N = I I V M B N Mat P LMod
37 27 3ad2ant1 R CRing N = I I V M B R Ring
38 eqid Poly 1 R = Poly 1 R
39 eqid Base Poly 1 R = Base Poly 1 R
40 18 38 39 vr1cl R Ring var 1 R Base Poly 1 R
41 37 40 syl R CRing N = I I V M B var 1 R Base Poly 1 R
42 38 ply1crng R CRing Poly 1 R CRing
43 42 3ad2ant1 R CRing N = I I V M B Poly 1 R CRing
44 2 oveq2i N Mat P = N Mat Poly 1 R
45 44 matsca2 N Fin Poly 1 R CRing Poly 1 R = Scalar N Mat P
46 12 43 45 syl2anc R CRing N = I I V M B Poly 1 R = Scalar N Mat P
47 46 eqcomd R CRing N = I I V M B Scalar N Mat P = Poly 1 R
48 47 fveq2d R CRing N = I I V M B Base Scalar N Mat P = Base Poly 1 R
49 41 48 eleqtrrd R CRing N = I I V M B var 1 R Base Scalar N Mat P
50 eqid Base N Mat P = Base N Mat P
51 50 21 ringidcl N Mat P Ring 1 N Mat P Base N Mat P
52 32 51 syl R CRing N = I I V M B 1 N Mat P Base N Mat P
53 eqid Scalar N Mat P = Scalar N Mat P
54 eqid Base Scalar N Mat P = Base Scalar N Mat P
55 50 53 19 54 lmodvscl N Mat P LMod var 1 R Base Scalar N Mat P 1 N Mat P Base N Mat P var 1 R N Mat P 1 N Mat P Base N Mat P
56 36 49 52 55 syl3anc R CRing N = I I V M B var 1 R N Mat P 1 N Mat P Base N Mat P
57 20 3 4 2 15 mat2pmatbas N Fin R Ring M B N matToPolyMat R M Base N Mat P
58 12 37 14 57 syl3anc R CRing N = I I V M B N matToPolyMat R M Base N Mat P
59 50 17 grpsubcl N Mat P Grp var 1 R N Mat P 1 N Mat P Base N Mat P N matToPolyMat R M Base N Mat P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
60 34 56 58 59 syl3anc R CRing N = I I V M B var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
61 16 15 50 m1detdiag P CRing N = I I V var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = I var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I
62 25 26 60 61 syl3anc R CRing N = I I V M B N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = I var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I
63 5 eqcomi var 1 R = X
64 63 a1i R CRing N = I I V M B var 1 R = X
65 64 oveq1d R CRing N = I I V M B var 1 R N Mat P 1 N Mat P = X N Mat P 1 N Mat P
66 65 oveq1d R CRing N = I I V M B var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
67 66 oveqd R CRing N = I I V M B I var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I = I X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I
68 1 2 3 4 5 6 7 15 20 chpmat1dlem R Ring N = I I V M B I X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I = X - ˙ S I M I
69 27 68 syl3an1 R CRing N = I I V M B I X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I = X - ˙ S I M I
70 67 69 eqtrd R CRing N = I I V M B I var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M I = X - ˙ S I M I
71 62 70 eqtrd R CRing N = I I V M B N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = X - ˙ S I M I
72 23 71 eqtrd R CRing N = I I V M B C M = X - ˙ S I M I