| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptk1.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | cnmptk1.k | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | cnmptk1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 4 |  | cnmptkp.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  ( 𝐿  ↑ko  𝐾 ) ) ) | 
						
							| 5 |  | cnmptkp.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑌 ) | 
						
							| 6 |  | cnmptkp.c | ⊢ ( 𝑦  =  𝐵  →  𝐴  =  𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  𝐴 )  =  ( 𝑦  ∈  𝑌  ↦  𝐴 ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑌 ) | 
						
							| 9 | 6 | eleq1d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∈  ∪  𝐿  ↔  𝐶  ∈  ∪  𝐿 ) ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 11 |  | topontop | ⊢ ( 𝐿  ∈  ( TopOn ‘ 𝑍 )  →  𝐿  ∈  Top ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝐿  ∈  Top ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐿  ∈  Top ) | 
						
							| 14 |  | toptopon2 | ⊢ ( 𝐿  ∈  Top  ↔  𝐿  ∈  ( TopOn ‘ ∪  𝐿 ) ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐿  ∈  ( TopOn ‘ ∪  𝐿 ) ) | 
						
							| 16 |  | topontop | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  𝐾  ∈  Top ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 18 |  | eqid | ⊢ ( 𝐿  ↑ko  𝐾 )  =  ( 𝐿  ↑ko  𝐾 ) | 
						
							| 19 | 18 | xkotopon | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐿  ∈  Top )  →  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) ) ) | 
						
							| 20 | 17 12 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) ) ) | 
						
							| 21 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  ( 𝐿  ↑ko  𝐾 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) : 𝑋 ⟶ ( 𝐾  Cn  𝐿 ) ) | 
						
							| 22 | 1 20 4 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) : 𝑋 ⟶ ( 𝐾  Cn  𝐿 ) ) | 
						
							| 23 | 22 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) ) | 
						
							| 24 |  | cnf2 | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐿  ∈  ( TopOn ‘ ∪  𝐿 )  ∧  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 ) : 𝑌 ⟶ ∪  𝐿 ) | 
						
							| 25 | 10 15 23 24 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 ) : 𝑌 ⟶ ∪  𝐿 ) | 
						
							| 26 | 7 | fmpt | ⊢ ( ∀ 𝑦  ∈  𝑌 𝐴  ∈  ∪  𝐿  ↔  ( 𝑦  ∈  𝑌  ↦  𝐴 ) : 𝑌 ⟶ ∪  𝐿 ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝑌 𝐴  ∈  ∪  𝐿 ) | 
						
							| 28 | 9 27 8 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ∪  𝐿 ) | 
						
							| 29 | 7 6 8 28 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝐵 )  =  𝐶 ) | 
						
							| 30 | 29 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝐵 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 31 |  | toponuni | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  𝑌  =  ∪  𝐾 ) | 
						
							| 32 | 2 31 | syl | ⊢ ( 𝜑  →  𝑌  =  ∪  𝐾 ) | 
						
							| 33 | 5 32 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ∪  𝐾 ) | 
						
							| 34 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 35 | 34 | xkopjcn | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐿  ∈  Top  ∧  𝐵  ∈  ∪  𝐾 )  →  ( 𝑤  ∈  ( 𝐾  Cn  𝐿 )  ↦  ( 𝑤 ‘ 𝐵 ) )  ∈  ( ( 𝐿  ↑ko  𝐾 )  Cn  𝐿 ) ) | 
						
							| 36 | 17 12 33 35 | syl3anc | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐾  Cn  𝐿 )  ↦  ( 𝑤 ‘ 𝐵 ) )  ∈  ( ( 𝐿  ↑ko  𝐾 )  Cn  𝐿 ) ) | 
						
							| 37 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑦  ∈  𝑌  ↦  𝐴 )  →  ( 𝑤 ‘ 𝐵 )  =  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 38 | 1 4 20 36 37 | cnmpt11 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝐵 ) )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 39 | 30 38 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐶 )  ∈  ( 𝐽  Cn  𝐿 ) ) |