Metamath Proof Explorer


Theorem cnmptkp

Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptk1.j φJTopOnX
cnmptk1.k φKTopOnY
cnmptk1.l φLTopOnZ
cnmptkp.a φxXyYAJCnL^koK
cnmptkp.b φBY
cnmptkp.c y=BA=C
Assertion cnmptkp φxXCJCnL

Proof

Step Hyp Ref Expression
1 cnmptk1.j φJTopOnX
2 cnmptk1.k φKTopOnY
3 cnmptk1.l φLTopOnZ
4 cnmptkp.a φxXyYAJCnL^koK
5 cnmptkp.b φBY
6 cnmptkp.c y=BA=C
7 eqid yYA=yYA
8 5 adantr φxXBY
9 6 eleq1d y=BALCL
10 2 adantr φxXKTopOnY
11 topontop LTopOnZLTop
12 3 11 syl φLTop
13 12 adantr φxXLTop
14 toptopon2 LTopLTopOnL
15 13 14 sylib φxXLTopOnL
16 topontop KTopOnYKTop
17 2 16 syl φKTop
18 eqid L^koK=L^koK
19 18 xkotopon KTopLTopL^koKTopOnKCnL
20 17 12 19 syl2anc φL^koKTopOnKCnL
21 cnf2 JTopOnXL^koKTopOnKCnLxXyYAJCnL^koKxXyYA:XKCnL
22 1 20 4 21 syl3anc φxXyYA:XKCnL
23 22 fvmptelcdm φxXyYAKCnL
24 cnf2 KTopOnYLTopOnLyYAKCnLyYA:YL
25 10 15 23 24 syl3anc φxXyYA:YL
26 7 fmpt yYALyYA:YL
27 25 26 sylibr φxXyYAL
28 9 27 8 rspcdva φxXCL
29 7 6 8 28 fvmptd3 φxXyYAB=C
30 29 mpteq2dva φxXyYAB=xXC
31 toponuni KTopOnYY=K
32 2 31 syl φY=K
33 5 32 eleqtrd φBK
34 eqid K=K
35 34 xkopjcn KTopLTopBKwKCnLwBL^koKCnL
36 17 12 33 35 syl3anc φwKCnLwBL^koKCnL
37 fveq1 w=yYAwB=yYAB
38 1 4 20 36 37 cnmpt11 φxXyYABJCnL
39 30 38 eqeltrrd φxXCJCnL