| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptk1.j |
|
| 2 |
|
cnmptk1.k |
|
| 3 |
|
cnmptk1.l |
|
| 4 |
|
cnmptkp.a |
|
| 5 |
|
cnmptkp.b |
|
| 6 |
|
cnmptkp.c |
|
| 7 |
|
eqid |
|
| 8 |
5
|
adantr |
|
| 9 |
6
|
eleq1d |
|
| 10 |
2
|
adantr |
|
| 11 |
|
topontop |
|
| 12 |
3 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
toptopon2 |
|
| 15 |
13 14
|
sylib |
|
| 16 |
|
topontop |
|
| 17 |
2 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
18
|
xkotopon |
|
| 20 |
17 12 19
|
syl2anc |
|
| 21 |
|
cnf2 |
|
| 22 |
1 20 4 21
|
syl3anc |
|
| 23 |
22
|
fvmptelcdm |
|
| 24 |
|
cnf2 |
|
| 25 |
10 15 23 24
|
syl3anc |
|
| 26 |
7
|
fmpt |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
9 27 8
|
rspcdva |
|
| 29 |
7 6 8 28
|
fvmptd3 |
|
| 30 |
29
|
mpteq2dva |
|
| 31 |
|
toponuni |
|
| 32 |
2 31
|
syl |
|
| 33 |
5 32
|
eleqtrd |
|
| 34 |
|
eqid |
|
| 35 |
34
|
xkopjcn |
|
| 36 |
17 12 33 35
|
syl3anc |
|
| 37 |
|
fveq1 |
|
| 38 |
1 4 20 36 37
|
cnmpt11 |
|
| 39 |
30 38
|
eqeltrrd |
|