| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashf2 | ⊢ ♯ : V ⟶ ( 0 [,] +∞ ) | 
						
							| 2 |  | ssv | ⊢ 𝑆  ⊆  V | 
						
							| 3 |  | fssres | ⊢ ( ( ♯ : V ⟶ ( 0 [,] +∞ )  ∧  𝑆  ⊆  V )  →  ( ♯  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ♯  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ♯  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 6 |  | 0elsiga | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ∅  ∈  𝑆 ) | 
						
							| 7 |  | fvres | ⊢ ( ∅  ∈  𝑆  →  ( ( ♯  ↾  𝑆 ) ‘ ∅ )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ( ♯  ↾  𝑆 ) ‘ ∅ )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 9 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ( ♯  ↾  𝑆 ) ‘ ∅ )  =  0 ) | 
						
							| 11 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 12 |  | hasheuni | ⊢ ( ( 𝑥  ∈  V  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( ♯ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ♯ ‘ 𝑦 ) ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( Disj  𝑦  ∈  𝑥 𝑦  →  ( ♯ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ♯ ‘ 𝑦 ) ) | 
						
							| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( ♯ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ♯ ‘ 𝑦 ) ) | 
						
							| 15 |  | isrnsigau | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( 𝑆  ⊆  𝒫  ∪  𝑆  ∧  ( ∪  𝑆  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( ∪  𝑆  ∖  𝑥 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑆 ) ) ) ) | 
						
							| 16 | 15 | simprd | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ∪  𝑆  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( ∪  𝑆  ∖  𝑥 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑆 ) ) ) | 
						
							| 17 | 16 | simp3d | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑆 ) ) | 
						
							| 18 |  | fvres | ⊢ ( ∪  𝑥  ∈  𝑆  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) | 
						
							| 19 | 18 | imim2i | ⊢ ( ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑆 )  →  ( 𝑥  ≼  ω  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) ) | 
						
							| 20 | 19 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ∀ 𝑥  ∈  𝒫  𝑆 ( 𝑥  ≼  ω  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) ) | 
						
							| 22 | 21 | r19.21bi | ⊢ ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  →  ( 𝑥  ≼  ω  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  𝑥  ≼  ω )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) | 
						
							| 24 | 23 | adantrr | ⊢ ( ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  ( ♯ ‘ ∪  𝑥 ) ) | 
						
							| 25 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  𝑥  ⊆  𝑆 ) | 
						
							| 26 | 25 | sseld | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑆 ) ) | 
						
							| 27 |  | fvres | ⊢ ( 𝑦  ∈  𝑆  →  ( ( ♯  ↾  𝑆 ) ‘ 𝑦 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 28 | 26 27 | syl6 | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  ( 𝑦  ∈  𝑥  →  ( ( ♯  ↾  𝑆 ) ‘ 𝑦 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  →  ( ( ♯  ↾  𝑆 ) ‘ 𝑦 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 30 | 29 | esumeq2dv | ⊢ ( 𝑥  ∈  𝒫  𝑆  →  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 )  =  Σ* 𝑦  ∈  𝑥 ( ♯ ‘ 𝑦 ) ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 )  =  Σ* 𝑦  ∈  𝑥 ( ♯ ‘ 𝑦 ) ) | 
						
							| 32 | 14 24 31 | 3eqtr4d | ⊢ ( ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑆  ∈  ∪  ran  sigAlgebra  ∧  𝑥  ∈  𝒫  𝑆 )  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ∀ 𝑥  ∈  𝒫  𝑆 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 ) ) ) | 
						
							| 35 |  | ismeas | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ( ♯  ↾  𝑆 )  ∈  ( measures ‘ 𝑆 )  ↔  ( ( ♯  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ )  ∧  ( ( ♯  ↾  𝑆 ) ‘ ∅ )  =  0  ∧  ∀ 𝑥  ∈  𝒫  𝑆 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( ( ♯  ↾  𝑆 ) ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( ( ♯  ↾  𝑆 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 36 | 5 10 34 35 | mpbir3and | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ♯  ↾  𝑆 )  ∈  ( measures ‘ 𝑆 ) ) |