Step |
Hyp |
Ref |
Expression |
1 |
|
hashf2 |
⊢ ♯ : V ⟶ ( 0 [,] +∞ ) |
2 |
|
ssv |
⊢ 𝑆 ⊆ V |
3 |
|
fssres |
⊢ ( ( ♯ : V ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ⊆ V ) → ( ♯ ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ♯ ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) |
5 |
4
|
a1i |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ♯ ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
6 |
|
0elsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆 ) |
7 |
|
fvres |
⊢ ( ∅ ∈ 𝑆 → ( ( ♯ ↾ 𝑆 ) ‘ ∅ ) = ( ♯ ‘ ∅ ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( ♯ ↾ 𝑆 ) ‘ ∅ ) = ( ♯ ‘ ∅ ) ) |
9 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( ♯ ↾ 𝑆 ) ‘ ∅ ) = 0 ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
hasheuni |
⊢ ( ( 𝑥 ∈ V ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ♯ ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ♯ ‘ 𝑦 ) ) |
13 |
11 12
|
mpan |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 → ( ♯ ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ♯ ‘ 𝑦 ) ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( ♯ ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ♯ ‘ 𝑦 ) ) |
15 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
16 |
15
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
17 |
16
|
simp3d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
18 |
|
fvres |
⊢ ( ∪ 𝑥 ∈ 𝑆 → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) |
19 |
18
|
imim2i |
⊢ ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ( 𝑥 ≼ ω → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) ) |
20 |
19
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) ) |
21 |
17 20
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) ) |
22 |
21
|
r19.21bi |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) → ( 𝑥 ≼ ω → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) |
24 |
23
|
adantrr |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = ( ♯ ‘ ∪ 𝑥 ) ) |
25 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → 𝑥 ⊆ 𝑆 ) |
26 |
25
|
sseld |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆 ) ) |
27 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑆 → ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) = ( ♯ ‘ 𝑦 ) ) |
28 |
26 27
|
syl6 |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → ( 𝑦 ∈ 𝑥 → ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) = ( ♯ ‘ 𝑦 ) ) ) |
29 |
28
|
imp |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) = ( ♯ ‘ 𝑦 ) ) |
30 |
29
|
esumeq2dv |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑥 ( ♯ ‘ 𝑦 ) ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑥 ( ♯ ‘ 𝑦 ) ) |
32 |
14 24 31
|
3eqtr4d |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) ) |
33 |
32
|
ex |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) ) ) |
35 |
|
ismeas |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( ♯ ↾ 𝑆 ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( ♯ ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( ♯ ↾ 𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ( ♯ ↾ 𝑆 ) ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( ( ♯ ↾ 𝑆 ) ‘ 𝑦 ) ) ) ) ) |
36 |
5 10 34 35
|
mpbir3and |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ♯ ↾ 𝑆 ) ∈ ( measures ‘ 𝑆 ) ) |