Metamath Proof Explorer


Theorem dihmeetlem3N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem3.b 𝐵 = ( Base ‘ 𝐾 )
dihmeetlem3.l = ( le ‘ 𝐾 )
dihmeetlem3.j = ( join ‘ 𝐾 )
dihmeetlem3.m = ( meet ‘ 𝐾 )
dihmeetlem3.a 𝐴 = ( Atoms ‘ 𝐾 )
dihmeetlem3.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion dihmeetlem3N ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ) → 𝑄𝑅 )

Proof

Step Hyp Ref Expression
1 dihmeetlem3.b 𝐵 = ( Base ‘ 𝐾 )
2 dihmeetlem3.l = ( le ‘ 𝐾 )
3 dihmeetlem3.j = ( join ‘ 𝐾 )
4 dihmeetlem3.m = ( meet ‘ 𝐾 )
5 dihmeetlem3.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihmeetlem3.h 𝐻 = ( LHyp ‘ 𝐾 )
7 simp2lr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ) → ¬ 𝑄 𝑊 )
8 oveq1 ( 𝑄 = 𝑅 → ( 𝑄 ( 𝑌 𝑊 ) ) = ( 𝑅 ( 𝑌 𝑊 ) ) )
9 simpr ( ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 )
10 8 9 sylan9eqr ( ( ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 )
11 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ HL )
12 11 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ Lat )
13 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄𝐴 )
14 1 5 atbase ( 𝑄𝐴𝑄𝐵 )
15 13 14 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄𝐵 )
16 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑋𝐵 )
17 simp12r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑌𝐵 )
18 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
19 12 16 17 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
20 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑊𝐻 )
21 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
22 20 21 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑊𝐵 )
23 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
24 12 16 22 23 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
25 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → 𝑄 ( 𝑄 ( 𝑋 𝑊 ) ) )
26 12 15 24 25 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 ( 𝑄 ( 𝑋 𝑊 ) ) )
27 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 )
28 26 27 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 𝑋 )
29 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
30 12 17 22 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
31 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ( 𝑌 𝑊 ) ∈ 𝐵 ) → 𝑄 ( 𝑄 ( 𝑌 𝑊 ) ) )
32 12 15 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 ( 𝑄 ( 𝑌 𝑊 ) ) )
33 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 )
34 32 33 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 𝑌 )
35 1 2 4 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑄 𝑋𝑄 𝑌 ) ↔ 𝑄 ( 𝑋 𝑌 ) ) )
36 12 15 16 17 35 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( ( 𝑄 𝑋𝑄 𝑌 ) ↔ 𝑄 ( 𝑋 𝑌 ) ) )
37 28 34 36 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 ( 𝑋 𝑌 ) )
38 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑋 𝑌 ) 𝑊 )
39 1 2 12 15 19 22 37 38 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌 ) → 𝑄 𝑊 )
40 39 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) → ( ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( 𝑄 ( 𝑌 𝑊 ) ) = 𝑌𝑄 𝑊 ) ) )
41 10 40 syl7 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) → ( ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → 𝑄 𝑊 ) ) )
42 41 exp4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) → ( ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) → ( 𝑄 = 𝑅𝑄 𝑊 ) ) ) )
43 42 3imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ) → ( 𝑄 = 𝑅𝑄 𝑊 ) )
44 43 necon3bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ) → ( ¬ 𝑄 𝑊𝑄𝑅 ) )
45 7 44 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 ) ) → 𝑄𝑅 )