| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetlem3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dihmeetlem3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
dihmeetlem3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
dihmeetlem3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
simp2lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
| 8 |
|
oveq1 |
⊢ ( 𝑄 = 𝑅 → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
| 10 |
8 9
|
sylan9eqr |
⊢ ( ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
| 11 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ HL ) |
| 12 |
11
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ Lat ) |
| 13 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ∈ 𝐴 ) |
| 14 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ∈ 𝐵 ) |
| 16 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 17 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| 18 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 19 |
12 16 17 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 20 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑊 ∈ 𝐻 ) |
| 21 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑊 ∈ 𝐵 ) |
| 23 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 24 |
12 16 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 25 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 26 |
12 15 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 27 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
| 28 |
26 27
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑋 ) |
| 29 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 30 |
12 17 22 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 31 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
| 32 |
12 15 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
| 33 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
| 34 |
32 33
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑌 ) |
| 35 |
1 2 4
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌 ) ↔ 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 36 |
12 15 16 17 35
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌 ) ↔ 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 37 |
28 34 36
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) |
| 38 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
| 39 |
1 2 12 15 19 22 37 38
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑊 ) |
| 40 |
39
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 → 𝑄 ≤ 𝑊 ) ) ) |
| 41 |
10 40
|
syl7 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → 𝑄 ≤ 𝑊 ) ) ) |
| 42 |
41
|
exp4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 = 𝑅 → 𝑄 ≤ 𝑊 ) ) ) ) |
| 43 |
42
|
3imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑄 = 𝑅 → 𝑄 ≤ 𝑊 ) ) |
| 44 |
43
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ¬ 𝑄 ≤ 𝑊 → 𝑄 ≠ 𝑅 ) ) |
| 45 |
7 44
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑄 ≠ 𝑅 ) |