Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihmeetlem3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihmeetlem3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihmeetlem3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
simp2lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
8 |
|
oveq1 |
⊢ ( 𝑄 = 𝑅 → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
9 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
10 |
8 9
|
sylan9eqr |
⊢ ( ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
11 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ HL ) |
12 |
11
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝐾 ∈ Lat ) |
13 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ∈ 𝐴 ) |
14 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ∈ 𝐵 ) |
16 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
17 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑌 ∈ 𝐵 ) |
18 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
19 |
12 16 17 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
20 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑊 ∈ 𝐻 ) |
21 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑊 ∈ 𝐵 ) |
23 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
24 |
12 16 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
25 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
26 |
12 15 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
27 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
28 |
26 27
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑋 ) |
29 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
30 |
12 17 22 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
31 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
32 |
12 15 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
33 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
34 |
32 33
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑌 ) |
35 |
1 2 4
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌 ) ↔ 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
36 |
12 15 16 17 35
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌 ) ↔ 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
37 |
28 34 36
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ ( 𝑋 ∧ 𝑌 ) ) |
38 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
39 |
1 2 12 15 19 22 37 38
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → 𝑄 ≤ 𝑊 ) |
40 |
39
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 𝑄 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 → 𝑄 ≤ 𝑊 ) ) ) |
41 |
10 40
|
syl7 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ∧ 𝑄 = 𝑅 ) → 𝑄 ≤ 𝑊 ) ) ) |
42 |
41
|
exp4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝑄 = 𝑅 → 𝑄 ≤ 𝑊 ) ) ) ) |
43 |
42
|
3imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( 𝑄 = 𝑅 → 𝑄 ≤ 𝑊 ) ) |
44 |
43
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → ( ¬ 𝑄 ≤ 𝑊 → 𝑄 ≠ 𝑅 ) ) |
45 |
7 44
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) → 𝑄 ≠ 𝑅 ) |