| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elun | ⊢ ( 𝑥  ∈  ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) )  ↔  ( 𝑥  ∈  ( inl  “  𝐴 )  ∨  𝑥  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 2 |  | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ }  ×  V ) | 
						
							| 3 |  | f1ofn | ⊢ ( inl : V –1-1-onto→ ( { ∅ }  ×  V )  →  inl  Fn  V ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ inl  Fn  V | 
						
							| 5 |  | ssv | ⊢ 𝐴  ⊆  V | 
						
							| 6 |  | fvelimab | ⊢ ( ( inl  Fn  V  ∧  𝐴  ⊆  V )  →  ( 𝑥  ∈  ( inl  “  𝐴 )  ↔  ∃ 𝑢  ∈  𝐴 ( inl ‘ 𝑢 )  =  𝑥 ) ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( 𝑥  ∈  ( inl  “  𝐴 )  ↔  ∃ 𝑢  ∈  𝐴 ( inl ‘ 𝑢 )  =  𝑥 ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑥  ∈  ( inl  “  𝐴 )  →  ∃ 𝑢  ∈  𝐴 ( inl ‘ 𝑢 )  =  𝑥 ) | 
						
							| 9 |  | simprr | ⊢ ( ( 𝑥  ∈  ( inl  “  𝐴 )  ∧  ( 𝑢  ∈  𝐴  ∧  ( inl ‘ 𝑢 )  =  𝑥 ) )  →  ( inl ‘ 𝑢 )  =  𝑥 ) | 
						
							| 10 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 11 |  | opex | ⊢ 〈 ∅ ,  𝑢 〉  ∈  V | 
						
							| 12 |  | opeq2 | ⊢ ( 𝑧  =  𝑢  →  〈 ∅ ,  𝑧 〉  =  〈 ∅ ,  𝑢 〉 ) | 
						
							| 13 |  | df-inl | ⊢ inl  =  ( 𝑧  ∈  V  ↦  〈 ∅ ,  𝑧 〉 ) | 
						
							| 14 | 12 13 | fvmptg | ⊢ ( ( 𝑢  ∈  V  ∧  〈 ∅ ,  𝑢 〉  ∈  V )  →  ( inl ‘ 𝑢 )  =  〈 ∅ ,  𝑢 〉 ) | 
						
							| 15 | 10 11 14 | mp2an | ⊢ ( inl ‘ 𝑢 )  =  〈 ∅ ,  𝑢 〉 | 
						
							| 16 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 17 | 16 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 18 |  | opelxpi | ⊢ ( ( ∅  ∈  { ∅ }  ∧  𝑢  ∈  𝐴 )  →  〈 ∅ ,  𝑢 〉  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 19 | 17 18 | mpan | ⊢ ( 𝑢  ∈  𝐴  →  〈 ∅ ,  𝑢 〉  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 20 | 19 | ad2antrl | ⊢ ( ( 𝑥  ∈  ( inl  “  𝐴 )  ∧  ( 𝑢  ∈  𝐴  ∧  ( inl ‘ 𝑢 )  =  𝑥 ) )  →  〈 ∅ ,  𝑢 〉  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 21 | 15 20 | eqeltrid | ⊢ ( ( 𝑥  ∈  ( inl  “  𝐴 )  ∧  ( 𝑢  ∈  𝐴  ∧  ( inl ‘ 𝑢 )  =  𝑥 ) )  →  ( inl ‘ 𝑢 )  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 22 | 9 21 | eqeltrrd | ⊢ ( ( 𝑥  ∈  ( inl  “  𝐴 )  ∧  ( 𝑢  ∈  𝐴  ∧  ( inl ‘ 𝑢 )  =  𝑥 ) )  →  𝑥  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 23 | 8 22 | rexlimddv | ⊢ ( 𝑥  ∈  ( inl  “  𝐴 )  →  𝑥  ∈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 24 |  | elun1 | ⊢ ( 𝑥  ∈  ( { ∅ }  ×  𝐴 )  →  𝑥  ∈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝑥  ∈  ( inl  “  𝐴 )  →  𝑥  ∈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 26 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐵 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) | 
						
							| 27 | 25 26 | eleqtrrdi | ⊢ ( 𝑥  ∈  ( inl  “  𝐴 )  →  𝑥  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 28 |  | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o }  ×  V ) | 
						
							| 29 |  | f1ofn | ⊢ ( inr : V –1-1-onto→ ( { 1o }  ×  V )  →  inr  Fn  V ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ inr  Fn  V | 
						
							| 31 |  | ssv | ⊢ 𝐵  ⊆  V | 
						
							| 32 |  | fvelimab | ⊢ ( ( inr  Fn  V  ∧  𝐵  ⊆  V )  →  ( 𝑥  ∈  ( inr  “  𝐵 )  ↔  ∃ 𝑢  ∈  𝐵 ( inr ‘ 𝑢 )  =  𝑥 ) ) | 
						
							| 33 | 30 31 32 | mp2an | ⊢ ( 𝑥  ∈  ( inr  “  𝐵 )  ↔  ∃ 𝑢  ∈  𝐵 ( inr ‘ 𝑢 )  =  𝑥 ) | 
						
							| 34 | 33 | biimpi | ⊢ ( 𝑥  ∈  ( inr  “  𝐵 )  →  ∃ 𝑢  ∈  𝐵 ( inr ‘ 𝑢 )  =  𝑥 ) | 
						
							| 35 |  | simprr | ⊢ ( ( 𝑥  ∈  ( inr  “  𝐵 )  ∧  ( 𝑢  ∈  𝐵  ∧  ( inr ‘ 𝑢 )  =  𝑥 ) )  →  ( inr ‘ 𝑢 )  =  𝑥 ) | 
						
							| 36 |  | opex | ⊢ 〈 1o ,  𝑢 〉  ∈  V | 
						
							| 37 |  | opeq2 | ⊢ ( 𝑧  =  𝑢  →  〈 1o ,  𝑧 〉  =  〈 1o ,  𝑢 〉 ) | 
						
							| 38 |  | df-inr | ⊢ inr  =  ( 𝑧  ∈  V  ↦  〈 1o ,  𝑧 〉 ) | 
						
							| 39 | 37 38 | fvmptg | ⊢ ( ( 𝑢  ∈  V  ∧  〈 1o ,  𝑢 〉  ∈  V )  →  ( inr ‘ 𝑢 )  =  〈 1o ,  𝑢 〉 ) | 
						
							| 40 | 10 36 39 | mp2an | ⊢ ( inr ‘ 𝑢 )  =  〈 1o ,  𝑢 〉 | 
						
							| 41 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 42 | 41 | snid | ⊢ 1o  ∈  { 1o } | 
						
							| 43 |  | opelxpi | ⊢ ( ( 1o  ∈  { 1o }  ∧  𝑢  ∈  𝐵 )  →  〈 1o ,  𝑢 〉  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 44 | 42 43 | mpan | ⊢ ( 𝑢  ∈  𝐵  →  〈 1o ,  𝑢 〉  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( 𝑥  ∈  ( inr  “  𝐵 )  ∧  ( 𝑢  ∈  𝐵  ∧  ( inr ‘ 𝑢 )  =  𝑥 ) )  →  〈 1o ,  𝑢 〉  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 46 | 40 45 | eqeltrid | ⊢ ( ( 𝑥  ∈  ( inr  “  𝐵 )  ∧  ( 𝑢  ∈  𝐵  ∧  ( inr ‘ 𝑢 )  =  𝑥 ) )  →  ( inr ‘ 𝑢 )  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 47 | 35 46 | eqeltrrd | ⊢ ( ( 𝑥  ∈  ( inr  “  𝐵 )  ∧  ( 𝑢  ∈  𝐵  ∧  ( inr ‘ 𝑢 )  =  𝑥 ) )  →  𝑥  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 48 | 34 47 | rexlimddv | ⊢ ( 𝑥  ∈  ( inr  “  𝐵 )  →  𝑥  ∈  ( { 1o }  ×  𝐵 ) ) | 
						
							| 49 |  | elun2 | ⊢ ( 𝑥  ∈  ( { 1o }  ×  𝐵 )  →  𝑥  ∈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑥  ∈  ( inr  “  𝐵 )  →  𝑥  ∈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 51 | 50 26 | eleqtrrdi | ⊢ ( 𝑥  ∈  ( inr  “  𝐵 )  →  𝑥  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 52 | 27 51 | jaoi | ⊢ ( ( 𝑥  ∈  ( inl  “  𝐴 )  ∨  𝑥  ∈  ( inr  “  𝐵 ) )  →  𝑥  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 53 | 1 52 | sylbi | ⊢ ( 𝑥  ∈  ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) )  →  𝑥  ∈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 54 | 53 | ssriv | ⊢ ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) )  ⊆  ( 𝐴  ⊔  𝐵 ) | 
						
							| 55 |  | djur | ⊢ ( 𝑥  ∈  ( 𝐴  ⊔  𝐵 )  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  ( inl ‘ 𝑦 )  ∨  ∃ 𝑦  ∈  𝐵 𝑥  =  ( inr ‘ 𝑦 ) ) ) | 
						
							| 56 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 57 |  | f1odm | ⊢ ( inl : V –1-1-onto→ ( { ∅ }  ×  V )  →  dom  inl  =  V ) | 
						
							| 58 | 2 57 | ax-mp | ⊢ dom  inl  =  V | 
						
							| 59 | 56 58 | eleqtrri | ⊢ 𝑦  ∈  dom  inl | 
						
							| 60 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  =  ( inl ‘ 𝑦 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 61 | 13 | funmpt2 | ⊢ Fun  inl | 
						
							| 62 |  | funfvima | ⊢ ( ( Fun  inl  ∧  𝑦  ∈  dom  inl )  →  ( 𝑦  ∈  𝐴  →  ( inl ‘ 𝑦 )  ∈  ( inl  “  𝐴 ) ) ) | 
						
							| 63 | 61 62 | mpan | ⊢ ( 𝑦  ∈  dom  inl  →  ( 𝑦  ∈  𝐴  →  ( inl ‘ 𝑦 )  ∈  ( inl  “  𝐴 ) ) ) | 
						
							| 64 | 59 60 63 | mpsyl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  =  ( inl ‘ 𝑦 ) )  →  ( inl ‘ 𝑦 )  ∈  ( inl  “  𝐴 ) ) | 
						
							| 65 |  | eleq1 | ⊢ ( 𝑥  =  ( inl ‘ 𝑦 )  →  ( 𝑥  ∈  ( inl  “  𝐴 )  ↔  ( inl ‘ 𝑦 )  ∈  ( inl  “  𝐴 ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  =  ( inl ‘ 𝑦 ) )  →  ( 𝑥  ∈  ( inl  “  𝐴 )  ↔  ( inl ‘ 𝑦 )  ∈  ( inl  “  𝐴 ) ) ) | 
						
							| 67 | 64 66 | mpbird | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  =  ( inl ‘ 𝑦 ) )  →  𝑥  ∈  ( inl  “  𝐴 ) ) | 
						
							| 68 | 67 | rexlimiva | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑥  =  ( inl ‘ 𝑦 )  →  𝑥  ∈  ( inl  “  𝐴 ) ) | 
						
							| 69 |  | f1odm | ⊢ ( inr : V –1-1-onto→ ( { 1o }  ×  V )  →  dom  inr  =  V ) | 
						
							| 70 | 28 69 | ax-mp | ⊢ dom  inr  =  V | 
						
							| 71 | 56 70 | eleqtrri | ⊢ 𝑦  ∈  dom  inr | 
						
							| 72 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  =  ( inr ‘ 𝑦 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 73 |  | f1ofun | ⊢ ( inr : V –1-1-onto→ ( { 1o }  ×  V )  →  Fun  inr ) | 
						
							| 74 | 28 73 | ax-mp | ⊢ Fun  inr | 
						
							| 75 |  | funfvima | ⊢ ( ( Fun  inr  ∧  𝑦  ∈  dom  inr )  →  ( 𝑦  ∈  𝐵  →  ( inr ‘ 𝑦 )  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 76 | 74 75 | mpan | ⊢ ( 𝑦  ∈  dom  inr  →  ( 𝑦  ∈  𝐵  →  ( inr ‘ 𝑦 )  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 77 | 71 72 76 | mpsyl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  =  ( inr ‘ 𝑦 ) )  →  ( inr ‘ 𝑦 )  ∈  ( inr  “  𝐵 ) ) | 
						
							| 78 |  | eleq1 | ⊢ ( 𝑥  =  ( inr ‘ 𝑦 )  →  ( 𝑥  ∈  ( inr  “  𝐵 )  ↔  ( inr ‘ 𝑦 )  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  =  ( inr ‘ 𝑦 ) )  →  ( 𝑥  ∈  ( inr  “  𝐵 )  ↔  ( inr ‘ 𝑦 )  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 80 | 77 79 | mpbird | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  =  ( inr ‘ 𝑦 ) )  →  𝑥  ∈  ( inr  “  𝐵 ) ) | 
						
							| 81 | 80 | rexlimiva | ⊢ ( ∃ 𝑦  ∈  𝐵 𝑥  =  ( inr ‘ 𝑦 )  →  𝑥  ∈  ( inr  “  𝐵 ) ) | 
						
							| 82 | 68 81 | orim12i | ⊢ ( ( ∃ 𝑦  ∈  𝐴 𝑥  =  ( inl ‘ 𝑦 )  ∨  ∃ 𝑦  ∈  𝐵 𝑥  =  ( inr ‘ 𝑦 ) )  →  ( 𝑥  ∈  ( inl  “  𝐴 )  ∨  𝑥  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 83 | 55 82 | syl | ⊢ ( 𝑥  ∈  ( 𝐴  ⊔  𝐵 )  →  ( 𝑥  ∈  ( inl  “  𝐴 )  ∨  𝑥  ∈  ( inr  “  𝐵 ) ) ) | 
						
							| 84 | 83 1 | sylibr | ⊢ ( 𝑥  ∈  ( 𝐴  ⊔  𝐵 )  →  𝑥  ∈  ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) ) ) | 
						
							| 85 | 84 | ssriv | ⊢ ( 𝐴  ⊔  𝐵 )  ⊆  ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) ) | 
						
							| 86 | 54 85 | eqssi | ⊢ ( ( inl  “  𝐴 )  ∪  ( inr  “  𝐵 ) )  =  ( 𝐴  ⊔  𝐵 ) |