| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elun |  |-  ( x e. ( ( inl " A ) u. ( inr " B ) ) <-> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) | 
						
							| 2 |  | djulf1o |  |-  inl : _V -1-1-onto-> ( { (/) } X. _V ) | 
						
							| 3 |  | f1ofn |  |-  ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl Fn _V ) | 
						
							| 4 | 2 3 | ax-mp |  |-  inl Fn _V | 
						
							| 5 |  | ssv |  |-  A C_ _V | 
						
							| 6 |  | fvelimab |  |-  ( ( inl Fn _V /\ A C_ _V ) -> ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) ) | 
						
							| 7 | 4 5 6 | mp2an |  |-  ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) | 
						
							| 8 | 7 | biimpi |  |-  ( x e. ( inl " A ) -> E. u e. A ( inl ` u ) = x ) | 
						
							| 9 |  | simprr |  |-  ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) = x ) | 
						
							| 10 |  | vex |  |-  u e. _V | 
						
							| 11 |  | opex |  |-  <. (/) , u >. e. _V | 
						
							| 12 |  | opeq2 |  |-  ( z = u -> <. (/) , z >. = <. (/) , u >. ) | 
						
							| 13 |  | df-inl |  |-  inl = ( z e. _V |-> <. (/) , z >. ) | 
						
							| 14 | 12 13 | fvmptg |  |-  ( ( u e. _V /\ <. (/) , u >. e. _V ) -> ( inl ` u ) = <. (/) , u >. ) | 
						
							| 15 | 10 11 14 | mp2an |  |-  ( inl ` u ) = <. (/) , u >. | 
						
							| 16 |  | 0ex |  |-  (/) e. _V | 
						
							| 17 | 16 | snid |  |-  (/) e. { (/) } | 
						
							| 18 |  | opelxpi |  |-  ( ( (/) e. { (/) } /\ u e. A ) -> <. (/) , u >. e. ( { (/) } X. A ) ) | 
						
							| 19 | 17 18 | mpan |  |-  ( u e. A -> <. (/) , u >. e. ( { (/) } X. A ) ) | 
						
							| 20 | 19 | ad2antrl |  |-  ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> <. (/) , u >. e. ( { (/) } X. A ) ) | 
						
							| 21 | 15 20 | eqeltrid |  |-  ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) e. ( { (/) } X. A ) ) | 
						
							| 22 | 9 21 | eqeltrrd |  |-  ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> x e. ( { (/) } X. A ) ) | 
						
							| 23 | 8 22 | rexlimddv |  |-  ( x e. ( inl " A ) -> x e. ( { (/) } X. A ) ) | 
						
							| 24 |  | elun1 |  |-  ( x e. ( { (/) } X. A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( x e. ( inl " A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 26 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 27 | 25 26 | eleqtrrdi |  |-  ( x e. ( inl " A ) -> x e. ( A |_| B ) ) | 
						
							| 28 |  | djurf1o |  |-  inr : _V -1-1-onto-> ( { 1o } X. _V ) | 
						
							| 29 |  | f1ofn |  |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr Fn _V ) | 
						
							| 30 | 28 29 | ax-mp |  |-  inr Fn _V | 
						
							| 31 |  | ssv |  |-  B C_ _V | 
						
							| 32 |  | fvelimab |  |-  ( ( inr Fn _V /\ B C_ _V ) -> ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) ) | 
						
							| 33 | 30 31 32 | mp2an |  |-  ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) | 
						
							| 34 | 33 | biimpi |  |-  ( x e. ( inr " B ) -> E. u e. B ( inr ` u ) = x ) | 
						
							| 35 |  | simprr |  |-  ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) = x ) | 
						
							| 36 |  | opex |  |-  <. 1o , u >. e. _V | 
						
							| 37 |  | opeq2 |  |-  ( z = u -> <. 1o , z >. = <. 1o , u >. ) | 
						
							| 38 |  | df-inr |  |-  inr = ( z e. _V |-> <. 1o , z >. ) | 
						
							| 39 | 37 38 | fvmptg |  |-  ( ( u e. _V /\ <. 1o , u >. e. _V ) -> ( inr ` u ) = <. 1o , u >. ) | 
						
							| 40 | 10 36 39 | mp2an |  |-  ( inr ` u ) = <. 1o , u >. | 
						
							| 41 |  | 1oex |  |-  1o e. _V | 
						
							| 42 | 41 | snid |  |-  1o e. { 1o } | 
						
							| 43 |  | opelxpi |  |-  ( ( 1o e. { 1o } /\ u e. B ) -> <. 1o , u >. e. ( { 1o } X. B ) ) | 
						
							| 44 | 42 43 | mpan |  |-  ( u e. B -> <. 1o , u >. e. ( { 1o } X. B ) ) | 
						
							| 45 | 44 | ad2antrl |  |-  ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> <. 1o , u >. e. ( { 1o } X. B ) ) | 
						
							| 46 | 40 45 | eqeltrid |  |-  ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) e. ( { 1o } X. B ) ) | 
						
							| 47 | 35 46 | eqeltrrd |  |-  ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> x e. ( { 1o } X. B ) ) | 
						
							| 48 | 34 47 | rexlimddv |  |-  ( x e. ( inr " B ) -> x e. ( { 1o } X. B ) ) | 
						
							| 49 |  | elun2 |  |-  ( x e. ( { 1o } X. B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( x e. ( inr " B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 51 | 50 26 | eleqtrrdi |  |-  ( x e. ( inr " B ) -> x e. ( A |_| B ) ) | 
						
							| 52 | 27 51 | jaoi |  |-  ( ( x e. ( inl " A ) \/ x e. ( inr " B ) ) -> x e. ( A |_| B ) ) | 
						
							| 53 | 1 52 | sylbi |  |-  ( x e. ( ( inl " A ) u. ( inr " B ) ) -> x e. ( A |_| B ) ) | 
						
							| 54 | 53 | ssriv |  |-  ( ( inl " A ) u. ( inr " B ) ) C_ ( A |_| B ) | 
						
							| 55 |  | djur |  |-  ( x e. ( A |_| B ) -> ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) ) | 
						
							| 56 |  | vex |  |-  y e. _V | 
						
							| 57 |  | f1odm |  |-  ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> dom inl = _V ) | 
						
							| 58 | 2 57 | ax-mp |  |-  dom inl = _V | 
						
							| 59 | 56 58 | eleqtrri |  |-  y e. dom inl | 
						
							| 60 |  | simpl |  |-  ( ( y e. A /\ x = ( inl ` y ) ) -> y e. A ) | 
						
							| 61 | 13 | funmpt2 |  |-  Fun inl | 
						
							| 62 |  | funfvima |  |-  ( ( Fun inl /\ y e. dom inl ) -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) | 
						
							| 63 | 61 62 | mpan |  |-  ( y e. dom inl -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) | 
						
							| 64 | 59 60 63 | mpsyl |  |-  ( ( y e. A /\ x = ( inl ` y ) ) -> ( inl ` y ) e. ( inl " A ) ) | 
						
							| 65 |  | eleq1 |  |-  ( x = ( inl ` y ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( y e. A /\ x = ( inl ` y ) ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) | 
						
							| 67 | 64 66 | mpbird |  |-  ( ( y e. A /\ x = ( inl ` y ) ) -> x e. ( inl " A ) ) | 
						
							| 68 | 67 | rexlimiva |  |-  ( E. y e. A x = ( inl ` y ) -> x e. ( inl " A ) ) | 
						
							| 69 |  | f1odm |  |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> dom inr = _V ) | 
						
							| 70 | 28 69 | ax-mp |  |-  dom inr = _V | 
						
							| 71 | 56 70 | eleqtrri |  |-  y e. dom inr | 
						
							| 72 |  | simpl |  |-  ( ( y e. B /\ x = ( inr ` y ) ) -> y e. B ) | 
						
							| 73 |  | f1ofun |  |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> Fun inr ) | 
						
							| 74 | 28 73 | ax-mp |  |-  Fun inr | 
						
							| 75 |  | funfvima |  |-  ( ( Fun inr /\ y e. dom inr ) -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) | 
						
							| 76 | 74 75 | mpan |  |-  ( y e. dom inr -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) | 
						
							| 77 | 71 72 76 | mpsyl |  |-  ( ( y e. B /\ x = ( inr ` y ) ) -> ( inr ` y ) e. ( inr " B ) ) | 
						
							| 78 |  | eleq1 |  |-  ( x = ( inr ` y ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( y e. B /\ x = ( inr ` y ) ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) | 
						
							| 80 | 77 79 | mpbird |  |-  ( ( y e. B /\ x = ( inr ` y ) ) -> x e. ( inr " B ) ) | 
						
							| 81 | 80 | rexlimiva |  |-  ( E. y e. B x = ( inr ` y ) -> x e. ( inr " B ) ) | 
						
							| 82 | 68 81 | orim12i |  |-  ( ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) | 
						
							| 83 | 55 82 | syl |  |-  ( x e. ( A |_| B ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) | 
						
							| 84 | 83 1 | sylibr |  |-  ( x e. ( A |_| B ) -> x e. ( ( inl " A ) u. ( inr " B ) ) ) | 
						
							| 85 | 84 | ssriv |  |-  ( A |_| B ) C_ ( ( inl " A ) u. ( inr " B ) ) | 
						
							| 86 | 54 85 | eqssi |  |-  ( ( inl " A ) u. ( inr " B ) ) = ( A |_| B ) |