| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difss |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) |
| 2 |
|
dmss |
⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) |
| 4 |
|
dmcoss |
⊢ dom ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ⊆ dom ◡ 𝐺 |
| 5 |
3 4
|
sstri |
⊢ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ dom ◡ 𝐺 |
| 6 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) |
| 8 |
|
f1odm |
⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → dom ◡ 𝐺 = 𝐴 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ◡ 𝐺 = 𝐴 ) |
| 10 |
5 9
|
sseqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ 𝐴 ) |
| 11 |
10
|
sselda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ) → 𝑥 ∈ 𝐴 ) |
| 12 |
|
imassrn |
⊢ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ⊆ ran 𝐺 |
| 13 |
|
f1of |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 15 |
14
|
frnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ran 𝐺 ⊆ 𝐴 ) |
| 16 |
12 15
|
sstrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ⊆ 𝐴 ) |
| 17 |
16
|
sselda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) → 𝑥 ∈ 𝐴 ) |
| 18 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 19 |
|
fco |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐴 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ) |
| 20 |
14 18 19
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ) |
| 21 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 22 |
7 21
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) |
| 23 |
|
fco |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐴 ∧ ◡ 𝐺 : 𝐴 ⟶ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐴 ⟶ 𝐴 ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐴 ⟶ 𝐴 ) |
| 25 |
24
|
ffnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) Fn 𝐴 ) |
| 26 |
|
fnelnfp |
⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 27 |
25 26
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 28 |
|
f1ofn |
⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐺 Fn 𝐴 ) |
| 29 |
7 28
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ◡ 𝐺 Fn 𝐴 ) |
| 30 |
|
fvco2 |
⊢ ( ( ◡ 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 31 |
29 30
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 32 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → 𝐹 Fn 𝐴 ) |
| 33 |
32
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 34 |
|
ffvelcdm |
⊢ ( ( ◡ 𝐺 : 𝐴 ⟶ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 35 |
22 34
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 36 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 37 |
33 35 36
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 |
31 37
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 39 |
38
|
eqeq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = 𝑥 ↔ ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ) ) |
| 40 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) |
| 41 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 42 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ) |
| 43 |
41 35 42
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ) |
| 44 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 45 |
|
f1ocnvfvb |
⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 46 |
40 43 44 45
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 47 |
39 46
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 48 |
47
|
necon3bid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ‘ 𝑥 ) ≠ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 49 |
|
necom |
⊢ ( ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) |
| 50 |
|
f1of1 |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 –1-1→ 𝐴 ) |
| 51 |
50
|
ad2antlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 : 𝐴 –1-1→ 𝐴 ) |
| 52 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
| 53 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
| 54 |
52 53
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 55 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → dom 𝐹 = 𝐴 ) |
| 56 |
54 55
|
sseqtrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) |
| 58 |
|
f1elima |
⊢ ( ( 𝐺 : 𝐴 –1-1→ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ) ) |
| 59 |
51 35 57 58
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ) ) |
| 60 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 61 |
60
|
adantll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 62 |
61
|
eleq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 63 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 64 |
33 35 63
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 65 |
59 62 64
|
3bitr3rd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ≠ ( ◡ 𝐺 ‘ 𝑥 ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 66 |
49 65
|
bitrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 67 |
27 48 66
|
3bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ↔ 𝑥 ∈ ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) ) |
| 68 |
11 17 67
|
eqrdav |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |