Step |
Hyp |
Ref |
Expression |
1 |
|
drhmsubc.c |
⊢ 𝐶 = ( 𝑈 ∩ DivRing ) |
2 |
|
drhmsubc.j |
⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) |
3 |
|
fldhmsubc.d |
⊢ 𝐷 = ( 𝑈 ∩ Field ) |
4 |
|
fldhmsubc.f |
⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) |
5 |
|
elin |
⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ CRing ) |
7 |
|
crngring |
⊢ ( 𝑟 ∈ CRing → 𝑟 ∈ Ring ) |
8 |
6 7
|
syl |
⊢ ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ Ring ) |
9 |
|
df-field |
⊢ Field = ( DivRing ∩ CRing ) |
10 |
8 9
|
eleq2s |
⊢ ( 𝑟 ∈ Field → 𝑟 ∈ Ring ) |
11 |
10
|
rgen |
⊢ ∀ 𝑟 ∈ Field 𝑟 ∈ Ring |
12 |
11 3 4
|
srhmsubc |
⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
13 |
|
inss1 |
⊢ ( DivRing ∩ CRing ) ⊆ DivRing |
14 |
9 13
|
eqsstri |
⊢ Field ⊆ DivRing |
15 |
|
sslin |
⊢ ( Field ⊆ DivRing → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) |
17 |
16
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
18 |
3 1
|
sseq12i |
⊢ ( 𝐷 ⊆ 𝐶 ↔ ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶 ) |
20 |
|
ssidd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ⊆ ( 𝑥 RingHom 𝑦 ) ) |
21 |
4
|
a1i |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
22 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) |
24 |
|
simprl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
25 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
26 |
25
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ 𝐷 ) |
27 |
|
ovexd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ∈ V ) |
28 |
21 23 24 26 27
|
ovmpod |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
29 |
2
|
a1i |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
30 |
16 18
|
mpbir |
⊢ 𝐷 ⊆ 𝐶 |
31 |
30
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐶 ) |
32 |
31
|
ad2antrl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ 𝐶 ) |
33 |
30
|
sseli |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐶 ) |
34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐶 ) |
35 |
34
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ 𝐶 ) |
36 |
29 23 32 35 27
|
ovmpod |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
37 |
20 28 36
|
3sstr4d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
38 |
37
|
ralrimivva |
⊢ ( 𝑈 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
39 |
|
ovex |
⊢ ( 𝑟 RingHom 𝑠 ) ∈ V |
40 |
4 39
|
fnmpoi |
⊢ 𝐹 Fn ( 𝐷 × 𝐷 ) |
41 |
40
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐹 Fn ( 𝐷 × 𝐷 ) ) |
42 |
2 39
|
fnmpoi |
⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
43 |
42
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
44 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ DivRing ) ∈ V ) |
45 |
1 44
|
eqeltrid |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
46 |
41 43 45
|
isssc |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐹 ⊆cat 𝐽 ↔ ( 𝐷 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
47 |
19 38 46
|
mpbir2and |
⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ⊆cat 𝐽 ) |
48 |
1 2
|
drhmsubc |
⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
49 |
|
eqid |
⊢ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) |
50 |
49
|
subsubc |
⊢ ( 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ∧ 𝐹 ⊆cat 𝐽 ) ) ) |
51 |
48 50
|
syl |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ∧ 𝐹 ⊆cat 𝐽 ) ) ) |
52 |
12 47 51
|
mpbir2and |
⊢ ( 𝑈 ∈ 𝑉 → 𝐹 ∈ ( Subcat ‘ ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ) ) |