| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem52.tf | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 2 |  | fourierdlem52.n | ⊢ 𝑁  =  ( ( ♯ ‘ 𝑇 )  −  1 ) | 
						
							| 3 |  | fourierdlem52.s | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 ) ) | 
						
							| 4 |  | fourierdlem52.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | fourierdlem52.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | fourierdlem52.t | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 7 |  | fourierdlem52.at | ⊢ ( 𝜑  →  𝐴  ∈  𝑇 ) | 
						
							| 8 |  | fourierdlem52.bt | ⊢ ( 𝜑  →  𝐵  ∈  𝑇 ) | 
						
							| 9 | 4 5 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 10 | 6 9 | sstrd | ⊢ ( 𝜑  →  𝑇  ⊆  ℝ ) | 
						
							| 11 | 1 10 3 2 | fourierdlem36 | ⊢ ( 𝜑  →  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 ) ) | 
						
							| 12 |  | isof1o | ⊢ ( 𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 )  →  𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) | 
						
							| 13 |  | f1of | ⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇  →  𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) | 
						
							| 15 | 14 6 | fssd | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 16 |  | f1ofo | ⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇  →  𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ) | 
						
							| 17 | 11 12 16 | 3syl | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇 ) | 
						
							| 18 |  | foelrn | ⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇  ∧  𝐴  ∈  𝑇 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐴  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 19 | 17 7 18 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐴  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 20 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  0  ≤  𝑗 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  0  ≤  𝑗 ) | 
						
							| 22 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 ) ) | 
						
							| 23 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 24 | 10 23 | sstrdi | ⊢ ( 𝜑  →  𝑇  ⊆  ℝ* ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑇  ⊆  ℝ* ) | 
						
							| 26 |  | fzssz | ⊢ ( 0 ... 𝑁 )  ⊆  ℤ | 
						
							| 27 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 28 | 27 23 | sstri | ⊢ ℤ  ⊆  ℝ* | 
						
							| 29 | 26 28 | sstri | ⊢ ( 0 ... 𝑁 )  ⊆  ℝ* | 
						
							| 30 | 25 29 | jctil | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 0 ... 𝑁 )  ⊆  ℝ*  ∧  𝑇  ⊆  ℝ* ) ) | 
						
							| 31 |  | hashcl | ⊢ ( 𝑇  ∈  Fin  →  ( ♯ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 32 | 1 31 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 33 | 7 | ne0d | ⊢ ( 𝜑  →  𝑇  ≠  ∅ ) | 
						
							| 34 |  | hashge1 | ⊢ ( ( 𝑇  ∈  Fin  ∧  𝑇  ≠  ∅ )  →  1  ≤  ( ♯ ‘ 𝑇 ) ) | 
						
							| 35 | 1 33 34 | syl2anc | ⊢ ( 𝜑  →  1  ≤  ( ♯ ‘ 𝑇 ) ) | 
						
							| 36 |  | elnnnn0c | ⊢ ( ( ♯ ‘ 𝑇 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑇 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 37 | 32 35 36 | sylanbrc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑇 )  ∈  ℕ ) | 
						
							| 38 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑇 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑇 )  −  1 )  ∈  ℕ0 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑇 )  −  1 )  ∈  ℕ0 ) | 
						
							| 40 | 2 39 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 41 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 42 | 40 41 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 43 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 45 | 44 | anim1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 46 |  | leisorel | ⊢ ( ( 𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 )  ∧  ( ( 0 ... 𝑁 )  ⊆  ℝ*  ∧  𝑇  ⊆  ℝ* )  ∧  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) )  →  ( 0  ≤  𝑗  ↔  ( 𝑆 ‘ 0 )  ≤  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 47 | 22 30 45 46 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 0  ≤  𝑗  ↔  ( 𝑆 ‘ 0 )  ≤  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 48 | 21 47 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑆 ‘ 0 )  ≤  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 49 | 48 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐴  =  ( 𝑆 ‘ 𝑗 ) )  →  ( 𝑆 ‘ 0 )  ≤  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 50 |  | eqcom | ⊢ ( 𝐴  =  ( 𝑆 ‘ 𝑗 )  ↔  ( 𝑆 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 51 | 50 | biimpi | ⊢ ( 𝐴  =  ( 𝑆 ‘ 𝑗 )  →  ( 𝑆 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 52 | 51 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐴  =  ( 𝑆 ‘ 𝑗 ) )  →  ( 𝑆 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 53 | 49 52 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐴  =  ( 𝑆 ‘ 𝑗 ) )  →  ( 𝑆 ‘ 0 )  ≤  𝐴 ) | 
						
							| 54 | 53 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐴  =  ( 𝑆 ‘ 𝑗 )  →  ( 𝑆 ‘ 0 )  ≤  𝐴 ) ) | 
						
							| 55 | 19 54 | mpd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  ≤  𝐴 ) | 
						
							| 56 | 4 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 57 | 5 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 58 | 15 44 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 59 |  | iccgelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑆 ‘ 0 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 𝑆 ‘ 0 ) ) | 
						
							| 60 | 56 57 58 59 | syl3anc | ⊢ ( 𝜑  →  𝐴  ≤  ( 𝑆 ‘ 0 ) ) | 
						
							| 61 | 9 58 | sseldd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  ∈  ℝ ) | 
						
							| 62 | 61 4 | letri3d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 0 )  =  𝐴  ↔  ( ( 𝑆 ‘ 0 )  ≤  𝐴  ∧  𝐴  ≤  ( 𝑆 ‘ 0 ) ) ) ) | 
						
							| 63 | 55 60 62 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  =  𝐴 ) | 
						
							| 64 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 65 | 42 64 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 66 | 15 65 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑁 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 67 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑆 ‘ 𝑁 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑆 ‘ 𝑁 )  ≤  𝐵 ) | 
						
							| 68 | 56 57 66 67 | syl3anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑁 )  ≤  𝐵 ) | 
						
							| 69 |  | foelrn | ⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝑇  ∧  𝐵  ∈  𝑇 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐵  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 70 | 17 8 69 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐵  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 71 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝐵  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 72 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ≤  𝑁 ) | 
						
							| 73 | 72 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝑗  ≤  𝑁 ) | 
						
							| 74 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 ) ) | 
						
							| 75 | 30 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  ( ( 0 ... 𝑁 )  ⊆  ℝ*  ∧  𝑇  ⊆  ℝ* ) ) | 
						
							| 76 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 77 | 65 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 78 |  | leisorel | ⊢ ( ( 𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝑇 )  ∧  ( ( 0 ... 𝑁 )  ⊆  ℝ*  ∧  𝑇  ⊆  ℝ* )  ∧  ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑗  ≤  𝑁  ↔  ( 𝑆 ‘ 𝑗 )  ≤  ( 𝑆 ‘ 𝑁 ) ) ) | 
						
							| 79 | 74 75 76 77 78 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  ( 𝑗  ≤  𝑁  ↔  ( 𝑆 ‘ 𝑗 )  ≤  ( 𝑆 ‘ 𝑁 ) ) ) | 
						
							| 80 | 73 79 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  ( 𝑆 ‘ 𝑗 )  ≤  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 81 | 71 80 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝐵  =  ( 𝑆 ‘ 𝑗 ) )  →  𝐵  ≤  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 82 | 81 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝐵  =  ( 𝑆 ‘ 𝑗 )  →  𝐵  ≤  ( 𝑆 ‘ 𝑁 ) ) ) | 
						
							| 83 | 70 82 | mpd | ⊢ ( 𝜑  →  𝐵  ≤  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 84 | 9 66 | sseldd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 85 | 84 5 | letri3d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑁 )  =  𝐵  ↔  ( ( 𝑆 ‘ 𝑁 )  ≤  𝐵  ∧  𝐵  ≤  ( 𝑆 ‘ 𝑁 ) ) ) ) | 
						
							| 86 | 68 83 85 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑁 )  =  𝐵 ) | 
						
							| 87 | 15 63 86 | jca31 | ⊢ ( 𝜑  →  ( ( 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 )  ∧  ( 𝑆 ‘ 0 )  =  𝐴 )  ∧  ( 𝑆 ‘ 𝑁 )  =  𝐵 ) ) |