Metamath Proof Explorer


Theorem fourierdlem52

Description: d16:d17,d18:jca |- ( ph -> ( ( S 0 ) <_ A /\ A <_ ( S 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem52.tf φTFin
fourierdlem52.n N=T1
fourierdlem52.s S=ιf|fIsom<,<0NT
fourierdlem52.a φA
fourierdlem52.b φB
fourierdlem52.t φTAB
fourierdlem52.at φAT
fourierdlem52.bt φBT
Assertion fourierdlem52 φS:0NABS0=ASN=B

Proof

Step Hyp Ref Expression
1 fourierdlem52.tf φTFin
2 fourierdlem52.n N=T1
3 fourierdlem52.s S=ιf|fIsom<,<0NT
4 fourierdlem52.a φA
5 fourierdlem52.b φB
6 fourierdlem52.t φTAB
7 fourierdlem52.at φAT
8 fourierdlem52.bt φBT
9 4 5 iccssred φAB
10 6 9 sstrd φT
11 1 10 3 2 fourierdlem36 φSIsom<,<0NT
12 isof1o SIsom<,<0NTS:0N1-1 ontoT
13 f1of S:0N1-1 ontoTS:0NT
14 11 12 13 3syl φS:0NT
15 14 6 fssd φS:0NAB
16 f1ofo S:0N1-1 ontoTS:0NontoT
17 11 12 16 3syl φS:0NontoT
18 foelrn S:0NontoTATj0NA=Sj
19 17 7 18 syl2anc φj0NA=Sj
20 elfzle1 j0N0j
21 20 adantl φj0N0j
22 11 adantr φj0NSIsom<,<0NT
23 ressxr *
24 10 23 sstrdi φT*
25 24 adantr φj0NT*
26 fzssz 0N
27 zssre
28 27 23 sstri *
29 26 28 sstri 0N*
30 25 29 jctil φj0N0N*T*
31 hashcl TFinT0
32 1 31 syl φT0
33 7 ne0d φT
34 hashge1 TFinT1T
35 1 33 34 syl2anc φ1T
36 elnnnn0c TT01T
37 32 35 36 sylanbrc φT
38 nnm1nn0 TT10
39 37 38 syl φT10
40 2 39 eqeltrid φN0
41 nn0uz 0=0
42 40 41 eleqtrdi φN0
43 eluzfz1 N000N
44 42 43 syl φ00N
45 44 anim1i φj0N00Nj0N
46 leisorel SIsom<,<0NT0N*T*00Nj0N0jS0Sj
47 22 30 45 46 syl3anc φj0N0jS0Sj
48 21 47 mpbid φj0NS0Sj
49 48 3adant3 φj0NA=SjS0Sj
50 eqcom A=SjSj=A
51 50 biimpi A=SjSj=A
52 51 3ad2ant3 φj0NA=SjSj=A
53 49 52 breqtrd φj0NA=SjS0A
54 53 rexlimdv3a φj0NA=SjS0A
55 19 54 mpd φS0A
56 4 rexrd φA*
57 5 rexrd φB*
58 15 44 ffvelcdmd φS0AB
59 iccgelb A*B*S0ABAS0
60 56 57 58 59 syl3anc φAS0
61 9 58 sseldd φS0
62 61 4 letri3d φS0=AS0AAS0
63 55 60 62 mpbir2and φS0=A
64 eluzfz2 N0N0N
65 42 64 syl φN0N
66 15 65 ffvelcdmd φSNAB
67 iccleub A*B*SNABSNB
68 56 57 66 67 syl3anc φSNB
69 foelrn S:0NontoTBTj0NB=Sj
70 17 8 69 syl2anc φj0NB=Sj
71 simp3 φj0NB=SjB=Sj
72 elfzle2 j0NjN
73 72 3ad2ant2 φj0NB=SjjN
74 11 3ad2ant1 φj0NB=SjSIsom<,<0NT
75 30 3adant3 φj0NB=Sj0N*T*
76 simp2 φj0NB=Sjj0N
77 65 3ad2ant1 φj0NB=SjN0N
78 leisorel SIsom<,<0NT0N*T*j0NN0NjNSjSN
79 74 75 76 77 78 syl112anc φj0NB=SjjNSjSN
80 73 79 mpbid φj0NB=SjSjSN
81 71 80 eqbrtrd φj0NB=SjBSN
82 81 rexlimdv3a φj0NB=SjBSN
83 70 82 mpd φBSN
84 9 66 sseldd φSN
85 84 5 letri3d φSN=BSNBBSN
86 68 83 85 mpbir2and φSN=B
87 15 63 86 jca31 φS:0NABS0=ASN=B