Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝐺 ∈ { ℜ , ℑ } → ( 𝐺 = ℜ ∨ 𝐺 = ℑ ) ) |
2 |
|
fveq1 |
⊢ ( 𝐺 = ℜ → ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝐺 = ℜ → ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
4 |
3
|
ifeq1d |
⊢ ( 𝐺 = ℜ → if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
5 |
4
|
mpteq2dv |
⊢ ( 𝐺 = ℜ → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝐺 = ℜ → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
8 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
9 |
8
|
recld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
11 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
12 |
11
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
13 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 ∈ 𝐿1 ) |
14 |
12 13
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
15 |
8
|
iblcn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) |
17 |
14 16
|
syldan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) |
18 |
17
|
simpld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
19 |
9
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
20 |
|
eqidd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
21 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
22 |
21
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → abs : ℂ ⟶ ℝ ) |
23 |
22
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
25 |
19 20 23 24
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
27 |
9
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
29 |
|
iblmbf |
⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |
30 |
29
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 ∈ MblFn ) |
31 |
12 30
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
32 |
8
|
ismbfcn2 |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) ) |
33 |
32
|
biimpa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
34 |
31 33
|
syldan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
35 |
34
|
simpld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
36 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
37 |
28 35 36
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
38 |
26 37
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
39 |
10 18 38
|
iblabsnc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ) |
40 |
19
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
41 |
19
|
absge0d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
42 |
40 41
|
iblpos |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
44 |
39 43
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
45 |
44
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
47 |
7 46
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
48 |
|
fveq1 |
⊢ ( 𝐺 = ℑ → ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝐺 = ℑ → ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
50 |
49
|
ifeq1d |
⊢ ( 𝐺 = ℑ → if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
51 |
50
|
mpteq2dv |
⊢ ( 𝐺 = ℑ → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝐺 = ℑ → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
54 |
8
|
imcld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
56 |
55
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
57 |
17
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
58 |
|
eqidd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑥 = ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
60 |
55 58 23 59
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
62 |
54
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
63 |
62
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
64 |
34
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
65 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
66 |
63 64 65
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
67 |
61 66
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
68 |
56 57 67
|
iblabsnc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ) |
69 |
55
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
70 |
55
|
absge0d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
71 |
69 70
|
iblpos |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
73 |
68 72
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
74 |
73
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
76 |
53 75
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
77 |
47 76
|
jaodan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ ( 𝐺 = ℜ ∨ 𝐺 = ℑ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
78 |
1 77
|
sylan2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
79 |
78
|
3impa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ∧ 𝐺 ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |