| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
⊢ ( 𝐺 ∈ { ℜ , ℑ } → ( 𝐺 = ℜ ∨ 𝐺 = ℑ ) ) |
| 2 |
|
fveq1 |
⊢ ( 𝐺 = ℜ → ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝐺 = ℜ → ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 4 |
3
|
ifeq1d |
⊢ ( 𝐺 = ℜ → if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
| 5 |
4
|
mpteq2dv |
⊢ ( 𝐺 = ℜ → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝐺 = ℜ → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 8 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 9 |
8
|
recld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 11 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 12 |
11
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 ∈ 𝐿1 ) |
| 14 |
12 13
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 15 |
8
|
iblcn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) |
| 17 |
14 16
|
syldan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) |
| 18 |
17
|
simpld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
| 19 |
9
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 20 |
|
eqidd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 21 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 22 |
21
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → abs : ℂ ⟶ ℝ ) |
| 23 |
22
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 25 |
19 20 23 24
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 27 |
9
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 29 |
|
iblmbf |
⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → 𝐹 ∈ MblFn ) |
| 31 |
12 30
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
| 32 |
8
|
ismbfcn2 |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
| 34 |
31 33
|
syldan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
| 35 |
34
|
simpld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 36 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 37 |
28 35 36
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 38 |
26 37
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 39 |
10 18 38
|
iblabsnc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ) |
| 40 |
19
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 41 |
19
|
absge0d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 42 |
40 41
|
iblpos |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 44 |
39 43
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 45 |
44
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 47 |
7 46
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℜ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 48 |
|
fveq1 |
⊢ ( 𝐺 = ℑ → ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( 𝐺 = ℑ → ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 50 |
49
|
ifeq1d |
⊢ ( 𝐺 = ℑ → if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
| 51 |
50
|
mpteq2dv |
⊢ ( 𝐺 = ℑ → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝐺 = ℑ → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 54 |
8
|
imcld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 55 |
54
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 56 |
55
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝑡 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 57 |
17
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
| 58 |
|
eqidd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑥 = ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 60 |
55 58 23 59
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 62 |
54
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 64 |
34
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 65 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ∧ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 66 |
63 64 65
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( abs ∘ ( 𝑡 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 67 |
61 66
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ) |
| 68 |
56 57 67
|
iblabsnc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ) |
| 69 |
55
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 70 |
55
|
absge0d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑡 ∈ 𝐴 ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 71 |
69 70
|
iblpos |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 73 |
68 72
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 74 |
73
|
simprd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 76 |
53 75
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 = ℑ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 77 |
47 76
|
jaodan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ ( 𝐺 = ℜ ∨ 𝐺 = ℑ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 78 |
1 77
|
sylan2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) ∧ 𝐺 ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 79 |
78
|
3impa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ∧ 𝐺 ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐴 , ( abs ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |