| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
1
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 3 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 4 |
3
|
ffvelcdmda |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 5 |
|
absreim |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 6 |
2 4 5
|
syl2an |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 7 |
6
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 8 |
2
|
recnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 9 |
8
|
sqvald |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 |
4
|
recnd |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 11 |
10
|
sqvald |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 12 |
9 11
|
oveqan12d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 13 |
12
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 15 |
7 14
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 16 |
15
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 17 |
|
ax-icn |
⊢ i ∈ ℂ |
| 18 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) → ( i · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 19 |
17 10 18
|
sylancr |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 20 |
|
addcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( i · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 21 |
8 19 20
|
syl2an |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 22 |
21
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 23 |
|
reex |
⊢ ℝ ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 25 |
2
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
|
ovexd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
| 27 |
1
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 29 |
23
|
a1i |
⊢ ( 𝐺 ∈ dom ∫1 → ℝ ∈ V ) |
| 30 |
17
|
a1i |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → i ∈ ℂ ) |
| 31 |
|
fconstmpt |
⊢ ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) |
| 32 |
31
|
a1i |
⊢ ( 𝐺 ∈ dom ∫1 → ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) ) |
| 33 |
3
|
feqmptd |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 = ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 34 |
29 30 4 32 33
|
offval2 |
⊢ ( 𝐺 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · 𝐺 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ℝ × { i } ) ∘f · 𝐺 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 36 |
24 25 26 28 35
|
offval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { i } ) ∘f · 𝐺 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 37 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 38 |
37
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → abs : ℂ ⟶ ℝ ) |
| 39 |
38
|
feqmptd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → abs = ( 𝑦 ∈ ℂ ↦ ( abs ‘ 𝑦 ) ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) → ( abs ‘ 𝑦 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 41 |
22 36 39 40
|
fmptco |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( abs ∘ ( 𝐹 ∘f + ( ( ℝ × { i } ) ∘f · 𝐺 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) + ( i · ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 42 |
8 8
|
mulcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 43 |
10 10
|
mulcld |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 44 |
|
addcl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ∧ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 45 |
42 43 44
|
syl2an |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐺 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 46 |
45
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 47 |
42
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 48 |
43
|
adantll |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 49 |
23
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
| 50 |
49 2 2 27 27
|
offval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 52 |
29 4 4 33 33
|
offval2 |
⊢ ( 𝐺 ∈ dom ∫1 → ( 𝐺 ∘f · 𝐺 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐺 ∘f · 𝐺 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 54 |
24 47 48 51 53
|
offval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 55 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
| 56 |
55
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → √ : ℂ ⟶ ℂ ) |
| 57 |
56
|
feqmptd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → √ = ( 𝑦 ∈ ℂ ↦ ( √ ‘ 𝑦 ) ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) → ( √ ‘ 𝑦 ) = ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 59 |
46 54 57 58
|
fmptco |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( √ ‘ ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) + ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 60 |
16 41 59
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( abs ∘ ( 𝐹 ∘f + ( ( ℝ × { i } ) ∘f · 𝐺 ) ) ) = ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ) |
| 61 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 62 |
|
resqrtcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 63 |
61 62
|
sylbi |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 65 |
|
id |
⊢ ( √ : ℂ ⟶ ℂ → √ : ℂ ⟶ ℂ ) |
| 66 |
65
|
feqmptd |
⊢ ( √ : ℂ ⟶ ℂ → √ = ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ) |
| 67 |
55 66
|
ax-mp |
⊢ √ = ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) |
| 68 |
67
|
reseq1i |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) = ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) |
| 69 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 70 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 71 |
69 70
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 72 |
|
resmpt |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ) |
| 73 |
71 72
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) |
| 74 |
68 73
|
eqtri |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) |
| 75 |
64 74
|
fmptd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ↾ ( 0 [,) +∞ ) ) : ( 0 [,) +∞ ) ⟶ ℝ ) |
| 76 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 78 |
|
oveq12 |
⊢ ( ( 𝑧 = 𝐹 ∧ 𝑧 = 𝐹 ) → ( 𝑧 ∘f · 𝑧 ) = ( 𝐹 ∘f · 𝐹 ) ) |
| 79 |
78
|
anidms |
⊢ ( 𝑧 = 𝐹 → ( 𝑧 ∘f · 𝑧 ) = ( 𝐹 ∘f · 𝐹 ) ) |
| 80 |
79
|
feq1d |
⊢ ( 𝑧 = 𝐹 → ( ( 𝑧 ∘f · 𝑧 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 81 |
|
i1ff |
⊢ ( 𝑧 ∈ dom ∫1 → 𝑧 : ℝ ⟶ ℝ ) |
| 82 |
81
|
ffvelcdmda |
⊢ ( ( 𝑧 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑧 ‘ 𝑥 ) ∈ ℝ ) |
| 83 |
82 82
|
remulcld |
⊢ ( ( 𝑧 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ∈ ℝ ) |
| 84 |
82
|
msqge0d |
⊢ ( ( 𝑧 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ) |
| 85 |
|
elrege0 |
⊢ ( ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ) ) |
| 86 |
83 84 85
|
sylanbrc |
⊢ ( ( 𝑧 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) |
| 87 |
86
|
fmpttd |
⊢ ( 𝑧 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 88 |
23
|
a1i |
⊢ ( 𝑧 ∈ dom ∫1 → ℝ ∈ V ) |
| 89 |
81
|
feqmptd |
⊢ ( 𝑧 ∈ dom ∫1 → 𝑧 = ( 𝑥 ∈ ℝ ↦ ( 𝑧 ‘ 𝑥 ) ) ) |
| 90 |
88 82 82 89 89
|
offval2 |
⊢ ( 𝑧 ∈ dom ∫1 → ( 𝑧 ∘f · 𝑧 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ) ) |
| 91 |
90
|
feq1d |
⊢ ( 𝑧 ∈ dom ∫1 → ( ( 𝑧 ∘f · 𝑧 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ↦ ( ( 𝑧 ‘ 𝑥 ) · ( 𝑧 ‘ 𝑥 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 92 |
87 91
|
mpbird |
⊢ ( 𝑧 ∈ dom ∫1 → ( 𝑧 ∘f · 𝑧 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 93 |
80 92
|
vtoclga |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 95 |
|
oveq12 |
⊢ ( ( 𝑧 = 𝐺 ∧ 𝑧 = 𝐺 ) → ( 𝑧 ∘f · 𝑧 ) = ( 𝐺 ∘f · 𝐺 ) ) |
| 96 |
95
|
anidms |
⊢ ( 𝑧 = 𝐺 → ( 𝑧 ∘f · 𝑧 ) = ( 𝐺 ∘f · 𝐺 ) ) |
| 97 |
96
|
feq1d |
⊢ ( 𝑧 = 𝐺 → ( ( 𝑧 ∘f · 𝑧 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐺 ∘f · 𝐺 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 98 |
97 92
|
vtoclga |
⊢ ( 𝐺 ∈ dom ∫1 → ( 𝐺 ∘f · 𝐺 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐺 ∘f · 𝐺 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 100 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 101 |
77 94 99 24 24 100
|
off |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 102 |
|
fco2 |
⊢ ( ( ( √ ↾ ( 0 [,) +∞ ) ) : ( 0 [,) +∞ ) ⟶ ℝ ∧ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) → ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) : ℝ ⟶ ℝ ) |
| 103 |
75 101 102
|
syl2anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) : ℝ ⟶ ℝ ) |
| 104 |
|
rnco |
⊢ ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) = ran ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) |
| 105 |
|
ffn |
⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) |
| 106 |
55 105
|
ax-mp |
⊢ √ Fn ℂ |
| 107 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 109 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 111 |
110 1 1 49 49 100
|
off |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 113 |
109
|
adantl |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 114 |
113 3 3 29 29 100
|
off |
⊢ ( 𝐺 ∈ dom ∫1 → ( 𝐺 ∘f · 𝐺 ) : ℝ ⟶ ℝ ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐺 ∘f · 𝐺 ) : ℝ ⟶ ℝ ) |
| 116 |
108 112 115 24 24 100
|
off |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) : ℝ ⟶ ℝ ) |
| 117 |
116
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ⊆ ℝ ) |
| 118 |
117 70
|
sstrdi |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ⊆ ℂ ) |
| 119 |
|
fnssres |
⊢ ( ( √ Fn ℂ ∧ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ⊆ ℂ ) → ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) Fn ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) |
| 120 |
106 118 119
|
sylancr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) Fn ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) |
| 121 |
|
id |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ dom ∫1 ) |
| 122 |
121 121
|
i1fmul |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 124 |
|
id |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 ∈ dom ∫1 ) |
| 125 |
124 124
|
i1fmul |
⊢ ( 𝐺 ∈ dom ∫1 → ( 𝐺 ∘f · 𝐺 ) ∈ dom ∫1 ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐺 ∘f · 𝐺 ) ∈ dom ∫1 ) |
| 127 |
123 126
|
i1fadd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ dom ∫1 ) |
| 128 |
|
i1frn |
⊢ ( ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ dom ∫1 → ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ Fin ) |
| 129 |
127 128
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ Fin ) |
| 130 |
|
fnfi |
⊢ ( ( ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) Fn ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∧ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ Fin ) → ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin ) |
| 131 |
120 129 130
|
syl2anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin ) |
| 132 |
|
rnfi |
⊢ ( ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin → ran ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin ) |
| 133 |
131 132
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ran ( √ ↾ ran ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin ) |
| 134 |
104 133
|
eqeltrid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ Fin ) |
| 135 |
|
cnvco |
⊢ ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) = ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∘ ◡ √ ) |
| 136 |
135
|
imaeq1i |
⊢ ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) = ( ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∘ ◡ √ ) “ { 𝑥 } ) |
| 137 |
|
imaco |
⊢ ( ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∘ ◡ √ ) “ { 𝑥 } ) = ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) |
| 138 |
136 137
|
eqtri |
⊢ ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) = ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) |
| 139 |
|
i1fima |
⊢ ( ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ dom ∫1 → ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) ∈ dom vol ) |
| 140 |
127 139
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) ∈ dom vol ) |
| 141 |
138 140
|
eqeltrid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) ∈ dom vol ) |
| 142 |
141
|
adantr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) ) → ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) ∈ dom vol ) |
| 143 |
138
|
fveq2i |
⊢ ( vol ‘ ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) ) = ( vol ‘ ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) ) |
| 144 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) → 𝑥 ≠ 0 ) |
| 145 |
|
c0ex |
⊢ 0 ∈ V |
| 146 |
145
|
elsn |
⊢ ( 0 ∈ { 𝑥 } ↔ 0 = 𝑥 ) |
| 147 |
|
eqcom |
⊢ ( 0 = 𝑥 ↔ 𝑥 = 0 ) |
| 148 |
146 147
|
bitri |
⊢ ( 0 ∈ { 𝑥 } ↔ 𝑥 = 0 ) |
| 149 |
148
|
necon3bbii |
⊢ ( ¬ 0 ∈ { 𝑥 } ↔ 𝑥 ≠ 0 ) |
| 150 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 151 |
150
|
eleq1i |
⊢ ( ( √ ‘ 0 ) ∈ { 𝑥 } ↔ 0 ∈ { 𝑥 } ) |
| 152 |
149 151
|
xchnxbir |
⊢ ( ¬ ( √ ‘ 0 ) ∈ { 𝑥 } ↔ 𝑥 ≠ 0 ) |
| 153 |
144 152
|
sylibr |
⊢ ( 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) → ¬ ( √ ‘ 0 ) ∈ { 𝑥 } ) |
| 154 |
153
|
olcd |
⊢ ( 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) → ( ¬ 0 ∈ ℂ ∨ ¬ ( √ ‘ 0 ) ∈ { 𝑥 } ) ) |
| 155 |
|
ianor |
⊢ ( ¬ ( 0 ∈ ℂ ∧ ( √ ‘ 0 ) ∈ { 𝑥 } ) ↔ ( ¬ 0 ∈ ℂ ∨ ¬ ( √ ‘ 0 ) ∈ { 𝑥 } ) ) |
| 156 |
|
elpreima |
⊢ ( √ Fn ℂ → ( 0 ∈ ( ◡ √ “ { 𝑥 } ) ↔ ( 0 ∈ ℂ ∧ ( √ ‘ 0 ) ∈ { 𝑥 } ) ) ) |
| 157 |
55 105 156
|
mp2b |
⊢ ( 0 ∈ ( ◡ √ “ { 𝑥 } ) ↔ ( 0 ∈ ℂ ∧ ( √ ‘ 0 ) ∈ { 𝑥 } ) ) |
| 158 |
155 157
|
xchnxbir |
⊢ ( ¬ 0 ∈ ( ◡ √ “ { 𝑥 } ) ↔ ( ¬ 0 ∈ ℂ ∨ ¬ ( √ ‘ 0 ) ∈ { 𝑥 } ) ) |
| 159 |
154 158
|
sylibr |
⊢ ( 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) → ¬ 0 ∈ ( ◡ √ “ { 𝑥 } ) ) |
| 160 |
|
i1fima2 |
⊢ ( ( ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ∈ dom ∫1 ∧ ¬ 0 ∈ ( ◡ √ “ { 𝑥 } ) ) → ( vol ‘ ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 161 |
127 159 160
|
syl2an |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) “ ( ◡ √ “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 162 |
143 161
|
eqeltrid |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ( ran ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) “ { 𝑥 } ) ) ∈ ℝ ) |
| 163 |
103 134 142 162
|
i1fd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( √ ∘ ( ( 𝐹 ∘f · 𝐹 ) ∘f + ( 𝐺 ∘f · 𝐺 ) ) ) ∈ dom ∫1 ) |
| 164 |
60 163
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( abs ∘ ( 𝐹 ∘f + ( ( ℝ × { i } ) ∘f · 𝐺 ) ) ) ∈ dom ∫1 ) |