Metamath Proof Explorer


Theorem i1fmul

Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses i1fadd.1 ( 𝜑𝐹 ∈ dom ∫1 )
i1fadd.2 ( 𝜑𝐺 ∈ dom ∫1 )
Assertion i1fmul ( 𝜑 → ( 𝐹f · 𝐺 ) ∈ dom ∫1 )

Proof

Step Hyp Ref Expression
1 i1fadd.1 ( 𝜑𝐹 ∈ dom ∫1 )
2 i1fadd.2 ( 𝜑𝐺 ∈ dom ∫1 )
3 remulcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
4 3 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
5 i1ff ( 𝐹 ∈ dom ∫1𝐹 : ℝ ⟶ ℝ )
6 1 5 syl ( 𝜑𝐹 : ℝ ⟶ ℝ )
7 i1ff ( 𝐺 ∈ dom ∫1𝐺 : ℝ ⟶ ℝ )
8 2 7 syl ( 𝜑𝐺 : ℝ ⟶ ℝ )
9 reex ℝ ∈ V
10 9 a1i ( 𝜑 → ℝ ∈ V )
11 inidm ( ℝ ∩ ℝ ) = ℝ
12 4 6 8 10 10 11 off ( 𝜑 → ( 𝐹f · 𝐺 ) : ℝ ⟶ ℝ )
13 i1frn ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin )
14 1 13 syl ( 𝜑 → ran 𝐹 ∈ Fin )
15 i1frn ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin )
16 2 15 syl ( 𝜑 → ran 𝐺 ∈ Fin )
17 xpfi ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin )
18 14 16 17 syl2anc ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin )
19 eqid ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) = ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) )
20 ovex ( 𝑢 · 𝑣 ) ∈ V
21 19 20 fnmpoi ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 )
22 dffn4 ( ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ↔ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) )
23 21 22 mpbi ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) )
24 fofi ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ) → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ∈ Fin )
25 18 23 24 sylancl ( 𝜑 → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ∈ Fin )
26 eqid ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑦 )
27 rspceov ( ( 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑦 ) ) → ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) )
28 26 27 mp3an3 ( ( 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ) → ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) )
29 ovex ( 𝑥 · 𝑦 ) ∈ V
30 eqeq1 ( 𝑤 = ( 𝑥 · 𝑦 ) → ( 𝑤 = ( 𝑢 · 𝑣 ) ↔ ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) )
31 30 2rexbidv ( 𝑤 = ( 𝑥 · 𝑦 ) → ( ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) ↔ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) )
32 29 31 elab ( ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ↔ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) )
33 28 32 sylibr ( ( 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ) → ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } )
34 33 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } )
35 6 ffnd ( 𝜑𝐹 Fn ℝ )
36 dffn3 ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 )
37 35 36 sylib ( 𝜑𝐹 : ℝ ⟶ ran 𝐹 )
38 8 ffnd ( 𝜑𝐺 Fn ℝ )
39 dffn3 ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 )
40 38 39 sylib ( 𝜑𝐺 : ℝ ⟶ ran 𝐺 )
41 34 37 40 10 10 11 off ( 𝜑 → ( 𝐹f · 𝐺 ) : ℝ ⟶ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } )
42 41 frnd ( 𝜑 → ran ( 𝐹f · 𝐺 ) ⊆ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } )
43 19 rnmpo ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) = { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) }
44 42 43 sseqtrrdi ( 𝜑 → ran ( 𝐹f · 𝐺 ) ⊆ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) )
45 25 44 ssfid ( 𝜑 → ran ( 𝐹f · 𝐺 ) ∈ Fin )
46 12 frnd ( 𝜑 → ran ( 𝐹f · 𝐺 ) ⊆ ℝ )
47 ax-resscn ℝ ⊆ ℂ
48 46 47 sstrdi ( 𝜑 → ran ( 𝐹f · 𝐺 ) ⊆ ℂ )
49 48 ssdifd ( 𝜑 → ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) )
50 49 sselda ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) )
51 1 2 i1fmullem ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) = 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) )
52 50 51 syldan ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) = 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) )
53 difss ( ran 𝐺 ∖ { 0 } ) ⊆ ran 𝐺
54 ssfi ( ( ran 𝐺 ∈ Fin ∧ ( ran 𝐺 ∖ { 0 } ) ⊆ ran 𝐺 ) → ( ran 𝐺 ∖ { 0 } ) ∈ Fin )
55 16 53 54 sylancl ( 𝜑 → ( ran 𝐺 ∖ { 0 } ) ∈ Fin )
56 i1fima ( 𝐹 ∈ dom ∫1 → ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol )
57 1 56 syl ( 𝜑 → ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol )
58 i1fima ( 𝐺 ∈ dom ∫1 → ( 𝐺 “ { 𝑧 } ) ∈ dom vol )
59 2 58 syl ( 𝜑 → ( 𝐺 “ { 𝑧 } ) ∈ dom vol )
60 inmbl ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol ∧ ( 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
61 57 59 60 syl2anc ( 𝜑 → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
62 61 ralrimivw ( 𝜑 → ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
63 finiunmbl ( ( ( ran 𝐺 ∖ { 0 } ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) → 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
64 55 62 63 syl2anc ( 𝜑 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
65 64 adantr ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol )
66 52 65 eqeltrd ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol )
67 mblvol ( ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) )
68 66 67 syl ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) )
69 mblss ( ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ )
70 66 69 syl ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ )
71 55 adantr ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( ran 𝐺 ∖ { 0 } ) ∈ Fin )
72 inss2 ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ( 𝐺 “ { 𝑧 } )
73 72 a1i ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ( 𝐺 “ { 𝑧 } ) )
74 59 ad2antrr ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝐺 “ { 𝑧 } ) ∈ dom vol )
75 mblss ( ( 𝐺 “ { 𝑧 } ) ∈ dom vol → ( 𝐺 “ { 𝑧 } ) ⊆ ℝ )
76 74 75 syl ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝐺 “ { 𝑧 } ) ⊆ ℝ )
77 mblvol ( ( 𝐺 “ { 𝑧 } ) ∈ dom vol → ( vol ‘ ( 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( 𝐺 “ { 𝑧 } ) ) )
78 74 77 syl ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( 𝐺 “ { 𝑧 } ) ) )
79 2 adantr ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → 𝐺 ∈ dom ∫1 )
80 i1fima2sn ( ( 𝐺 ∈ dom ∫1𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐺 “ { 𝑧 } ) ) ∈ ℝ )
81 79 80 sylan ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐺 “ { 𝑧 } ) ) ∈ ℝ )
82 78 81 eqeltrrd ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( 𝐺 “ { 𝑧 } ) ) ∈ ℝ )
83 ovolsscl ( ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ( 𝐺 “ { 𝑧 } ) ∧ ( 𝐺 “ { 𝑧 } ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ )
84 73 76 82 83 syl3anc ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ )
85 71 84 fsumrecl ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ )
86 52 fveq2d ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) )
87 mblss ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ∈ dom vol → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ )
88 61 87 syl ( 𝜑 → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ )
89 88 ad2antrr ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ )
90 89 84 jca ( ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) )
91 90 ralrimiva ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) )
92 ovolfiniun ( ( ( ran 𝐺 ∖ { 0 } ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) )
93 71 91 92 syl2anc ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) )
94 86 93 eqbrtrd ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) )
95 ovollecl ( ( ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ∧ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( 𝐺 “ { 𝑧 } ) ) ) ) → ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ )
96 70 85 94 95 syl3anc ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ )
97 68 96 eqeltrd ( ( 𝜑𝑦 ∈ ( ran ( 𝐹f · 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ( 𝐹f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ )
98 12 45 66 97 i1fd ( 𝜑 → ( 𝐹f · 𝐺 ) ∈ dom ∫1 )