| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
| 2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
| 3 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 5 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 7 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 9 |
|
reex |
⊢ ℝ ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 12 |
4 6 8 10 10 11
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) : ℝ ⟶ ℝ ) |
| 13 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 15 |
|
i1frn |
⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 17 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 19 |
|
eqid |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) = ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) |
| 20 |
|
ovex |
⊢ ( 𝑢 · 𝑣 ) ∈ V |
| 21 |
19 20
|
fnmpoi |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) |
| 22 |
|
dffn4 |
⊢ ( ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ↔ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ) |
| 23 |
21 22
|
mpbi |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) |
| 24 |
|
fofi |
⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ) → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ∈ Fin ) |
| 25 |
18 23 24
|
sylancl |
⊢ ( 𝜑 → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ∈ Fin ) |
| 26 |
|
eqid |
⊢ ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑦 ) |
| 27 |
|
rspceov |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑦 ) ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
| 28 |
26 27
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
| 29 |
|
ovex |
⊢ ( 𝑥 · 𝑦 ) ∈ V |
| 30 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝑥 · 𝑦 ) → ( 𝑤 = ( 𝑢 · 𝑣 ) ↔ ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) ) |
| 31 |
30
|
2rexbidv |
⊢ ( 𝑤 = ( 𝑥 · 𝑦 ) → ( ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) ) |
| 32 |
29 31
|
elab |
⊢ ( ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
| 33 |
28 32
|
sylibr |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 · 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ) |
| 35 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 36 |
|
dffn3 |
⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 37 |
35 36
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 38 |
8
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 39 |
|
dffn3 |
⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 40 |
38 39
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 41 |
34 37 40 10 10 11
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) : ℝ ⟶ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ) |
| 42 |
41
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f · 𝐺 ) ⊆ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } ) |
| 43 |
19
|
rnmpo |
⊢ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) = { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 · 𝑣 ) } |
| 44 |
42 43
|
sseqtrrdi |
⊢ ( 𝜑 → ran ( 𝐹 ∘f · 𝐺 ) ⊆ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 · 𝑣 ) ) ) |
| 45 |
25 44
|
ssfid |
⊢ ( 𝜑 → ran ( 𝐹 ∘f · 𝐺 ) ∈ Fin ) |
| 46 |
12
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f · 𝐺 ) ⊆ ℝ ) |
| 47 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 48 |
46 47
|
sstrdi |
⊢ ( 𝜑 → ran ( 𝐹 ∘f · 𝐺 ) ⊆ ℂ ) |
| 49 |
48
|
ssdifd |
⊢ ( 𝜑 → ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) |
| 51 |
1 2
|
i1fmullem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 52 |
50 51
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 53 |
|
difss |
⊢ ( ran 𝐺 ∖ { 0 } ) ⊆ ran 𝐺 |
| 54 |
|
ssfi |
⊢ ( ( ran 𝐺 ∈ Fin ∧ ( ran 𝐺 ∖ { 0 } ) ⊆ ran 𝐺 ) → ( ran 𝐺 ∖ { 0 } ) ∈ Fin ) |
| 55 |
16 53 54
|
sylancl |
⊢ ( 𝜑 → ( ran 𝐺 ∖ { 0 } ) ∈ Fin ) |
| 56 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol ) |
| 57 |
1 56
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol ) |
| 58 |
|
i1fima |
⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 59 |
2 58
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 60 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 61 |
57 59 60
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 62 |
61
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 63 |
|
finiunmbl |
⊢ ( ( ( ran 𝐺 ∖ { 0 } ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) → ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 64 |
55 62 63
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 66 |
52 65
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol ) |
| 67 |
|
mblvol |
⊢ ( ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ) |
| 69 |
|
mblss |
⊢ ( ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) |
| 70 |
66 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) |
| 71 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( ran 𝐺 ∖ { 0 } ) ∈ Fin ) |
| 72 |
|
inss2 |
⊢ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) |
| 73 |
72
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 74 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 75 |
|
mblss |
⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
| 76 |
74 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
| 77 |
|
mblvol |
⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 78 |
74 77
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → 𝐺 ∈ dom ∫1 ) |
| 80 |
|
i1fima2sn |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
| 81 |
79 80
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
| 82 |
78 81
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
| 83 |
|
ovolsscl |
⊢ ( ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ∧ ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 84 |
73 76 82 83
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 85 |
71 84
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 86 |
52
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 87 |
|
mblss |
⊢ ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ) |
| 88 |
61 87
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ) |
| 89 |
88
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ) |
| 90 |
89 84
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 91 |
90
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 92 |
|
ovolfiniun |
⊢ ( ( ( ran 𝐺 ∖ { 0 } ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 93 |
71 91 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ∪ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 94 |
86 93
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 95 |
|
ovollecl |
⊢ ( ( ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ∧ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 / 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 96 |
70 85 94 95
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 97 |
68 96
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f · 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 98 |
12 45 66 97
|
i1fd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ dom ∫1 ) |