Metamath Proof Explorer


Theorem i1fmul

Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
Assertion i1fmul φ F × f G dom 1

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 remulcl x y x y
4 3 adantl φ x y x y
5 i1ff F dom 1 F :
6 1 5 syl φ F :
7 i1ff G dom 1 G :
8 2 7 syl φ G :
9 reex V
10 9 a1i φ V
11 inidm =
12 4 6 8 10 10 11 off φ F × f G :
13 i1frn F dom 1 ran F Fin
14 1 13 syl φ ran F Fin
15 i1frn G dom 1 ran G Fin
16 2 15 syl φ ran G Fin
17 xpfi ran F Fin ran G Fin ran F × ran G Fin
18 14 16 17 syl2anc φ ran F × ran G Fin
19 eqid u ran F , v ran G u v = u ran F , v ran G u v
20 ovex u v V
21 19 20 fnmpoi u ran F , v ran G u v Fn ran F × ran G
22 dffn4 u ran F , v ran G u v Fn ran F × ran G u ran F , v ran G u v : ran F × ran G onto ran u ran F , v ran G u v
23 21 22 mpbi u ran F , v ran G u v : ran F × ran G onto ran u ran F , v ran G u v
24 fofi ran F × ran G Fin u ran F , v ran G u v : ran F × ran G onto ran u ran F , v ran G u v ran u ran F , v ran G u v Fin
25 18 23 24 sylancl φ ran u ran F , v ran G u v Fin
26 eqid x y = x y
27 rspceov x ran F y ran G x y = x y u ran F v ran G x y = u v
28 26 27 mp3an3 x ran F y ran G u ran F v ran G x y = u v
29 ovex x y V
30 eqeq1 w = x y w = u v x y = u v
31 30 2rexbidv w = x y u ran F v ran G w = u v u ran F v ran G x y = u v
32 29 31 elab x y w | u ran F v ran G w = u v u ran F v ran G x y = u v
33 28 32 sylibr x ran F y ran G x y w | u ran F v ran G w = u v
34 33 adantl φ x ran F y ran G x y w | u ran F v ran G w = u v
35 6 ffnd φ F Fn
36 dffn3 F Fn F : ran F
37 35 36 sylib φ F : ran F
38 8 ffnd φ G Fn
39 dffn3 G Fn G : ran G
40 38 39 sylib φ G : ran G
41 34 37 40 10 10 11 off φ F × f G : w | u ran F v ran G w = u v
42 41 frnd φ ran F × f G w | u ran F v ran G w = u v
43 19 rnmpo ran u ran F , v ran G u v = w | u ran F v ran G w = u v
44 42 43 sseqtrrdi φ ran F × f G ran u ran F , v ran G u v
45 25 44 ssfid φ ran F × f G Fin
46 12 frnd φ ran F × f G
47 ax-resscn
48 46 47 sstrdi φ ran F × f G
49 48 ssdifd φ ran F × f G 0 0
50 49 sselda φ y ran F × f G 0 y 0
51 1 2 i1fmullem φ y 0 F × f G -1 y = z ran G 0 F -1 y z G -1 z
52 50 51 syldan φ y ran F × f G 0 F × f G -1 y = z ran G 0 F -1 y z G -1 z
53 difss ran G 0 ran G
54 ssfi ran G Fin ran G 0 ran G ran G 0 Fin
55 16 53 54 sylancl φ ran G 0 Fin
56 i1fima F dom 1 F -1 y z dom vol
57 1 56 syl φ F -1 y z dom vol
58 i1fima G dom 1 G -1 z dom vol
59 2 58 syl φ G -1 z dom vol
60 inmbl F -1 y z dom vol G -1 z dom vol F -1 y z G -1 z dom vol
61 57 59 60 syl2anc φ F -1 y z G -1 z dom vol
62 61 ralrimivw φ z ran G 0 F -1 y z G -1 z dom vol
63 finiunmbl ran G 0 Fin z ran G 0 F -1 y z G -1 z dom vol z ran G 0 F -1 y z G -1 z dom vol
64 55 62 63 syl2anc φ z ran G 0 F -1 y z G -1 z dom vol
65 64 adantr φ y ran F × f G 0 z ran G 0 F -1 y z G -1 z dom vol
66 52 65 eqeltrd φ y ran F × f G 0 F × f G -1 y dom vol
67 mblvol F × f G -1 y dom vol vol F × f G -1 y = vol * F × f G -1 y
68 66 67 syl φ y ran F × f G 0 vol F × f G -1 y = vol * F × f G -1 y
69 mblss F × f G -1 y dom vol F × f G -1 y
70 66 69 syl φ y ran F × f G 0 F × f G -1 y
71 55 adantr φ y ran F × f G 0 ran G 0 Fin
72 inss2 F -1 y z G -1 z G -1 z
73 72 a1i φ y ran F × f G 0 z ran G 0 F -1 y z G -1 z G -1 z
74 59 ad2antrr φ y ran F × f G 0 z ran G 0 G -1 z dom vol
75 mblss G -1 z dom vol G -1 z
76 74 75 syl φ y ran F × f G 0 z ran G 0 G -1 z
77 mblvol G -1 z dom vol vol G -1 z = vol * G -1 z
78 74 77 syl φ y ran F × f G 0 z ran G 0 vol G -1 z = vol * G -1 z
79 2 adantr φ y ran F × f G 0 G dom 1
80 i1fima2sn G dom 1 z ran G 0 vol G -1 z
81 79 80 sylan φ y ran F × f G 0 z ran G 0 vol G -1 z
82 78 81 eqeltrrd φ y ran F × f G 0 z ran G 0 vol * G -1 z
83 ovolsscl F -1 y z G -1 z G -1 z G -1 z vol * G -1 z vol * F -1 y z G -1 z
84 73 76 82 83 syl3anc φ y ran F × f G 0 z ran G 0 vol * F -1 y z G -1 z
85 71 84 fsumrecl φ y ran F × f G 0 z ran G 0 vol * F -1 y z G -1 z
86 52 fveq2d φ y ran F × f G 0 vol * F × f G -1 y = vol * z ran G 0 F -1 y z G -1 z
87 mblss F -1 y z G -1 z dom vol F -1 y z G -1 z
88 61 87 syl φ F -1 y z G -1 z
89 88 ad2antrr φ y ran F × f G 0 z ran G 0 F -1 y z G -1 z
90 89 84 jca φ y ran F × f G 0 z ran G 0 F -1 y z G -1 z vol * F -1 y z G -1 z
91 90 ralrimiva φ y ran F × f G 0 z ran G 0 F -1 y z G -1 z vol * F -1 y z G -1 z
92 ovolfiniun ran G 0 Fin z ran G 0 F -1 y z G -1 z vol * F -1 y z G -1 z vol * z ran G 0 F -1 y z G -1 z z ran G 0 vol * F -1 y z G -1 z
93 71 91 92 syl2anc φ y ran F × f G 0 vol * z ran G 0 F -1 y z G -1 z z ran G 0 vol * F -1 y z G -1 z
94 86 93 eqbrtrd φ y ran F × f G 0 vol * F × f G -1 y z ran G 0 vol * F -1 y z G -1 z
95 ovollecl F × f G -1 y z ran G 0 vol * F -1 y z G -1 z vol * F × f G -1 y z ran G 0 vol * F -1 y z G -1 z vol * F × f G -1 y
96 70 85 94 95 syl3anc φ y ran F × f G 0 vol * F × f G -1 y
97 68 96 eqeltrd φ y ran F × f G 0 vol F × f G -1 y
98 12 45 66 97 i1fd φ F × f G dom 1