Metamath Proof Explorer


Theorem ovolfiniun

Description: The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion ovolfiniun AFinkABvol*Bvol*kABkAvol*B

Proof

Step Hyp Ref Expression
1 raleq x=kxBvol*BkBvol*B
2 iuneq1 x=kxB=kB
3 2 fveq2d x=vol*kxB=vol*kB
4 sumeq1 x=kxvol*B=kvol*B
5 3 4 breq12d x=vol*kxBkxvol*Bvol*kBkvol*B
6 1 5 imbi12d x=kxBvol*Bvol*kxBkxvol*BkBvol*Bvol*kBkvol*B
7 raleq x=ykxBvol*BkyBvol*B
8 iuneq1 x=ykxB=kyB
9 8 fveq2d x=yvol*kxB=vol*kyB
10 sumeq1 x=ykxvol*B=kyvol*B
11 9 10 breq12d x=yvol*kxBkxvol*Bvol*kyBkyvol*B
12 7 11 imbi12d x=ykxBvol*Bvol*kxBkxvol*BkyBvol*Bvol*kyBkyvol*B
13 raleq x=yzkxBvol*BkyzBvol*B
14 iuneq1 x=yzkxB=kyzB
15 14 fveq2d x=yzvol*kxB=vol*kyzB
16 sumeq1 x=yzkxvol*B=kyzvol*B
17 15 16 breq12d x=yzvol*kxBkxvol*Bvol*kyzBkyzvol*B
18 13 17 imbi12d x=yzkxBvol*Bvol*kxBkxvol*BkyzBvol*Bvol*kyzBkyzvol*B
19 raleq x=AkxBvol*BkABvol*B
20 iuneq1 x=AkxB=kAB
21 20 fveq2d x=Avol*kxB=vol*kAB
22 sumeq1 x=Akxvol*B=kAvol*B
23 21 22 breq12d x=Avol*kxBkxvol*Bvol*kABkAvol*B
24 19 23 imbi12d x=AkxBvol*Bvol*kxBkxvol*BkABvol*Bvol*kABkAvol*B
25 0le0 00
26 0iun kB=
27 26 fveq2i vol*kB=vol*
28 ovol0 vol*=0
29 27 28 eqtri vol*kB=0
30 sum0 kvol*B=0
31 25 29 30 3brtr4i vol*kBkvol*B
32 31 a1i kBvol*Bvol*kBkvol*B
33 ssun1 yyz
34 ssralv yyzkyzBvol*BkyBvol*B
35 33 34 ax-mp kyzBvol*BkyBvol*B
36 35 imim1i kyBvol*Bvol*kyBkyvol*BkyzBvol*Bvol*kyBkyvol*B
37 simprl yFin¬zykyzBvol*Bvol*kyBkyvol*BkyzBvol*B
38 nfcsb1v _km/kB
39 nfcv _k
40 38 39 nfss km/kB
41 nfcv _kvol*
42 41 38 nffv _kvol*m/kB
43 42 nfel1 kvol*m/kB
44 40 43 nfan km/kBvol*m/kB
45 csbeq1a k=mB=m/kB
46 45 sseq1d k=mBm/kB
47 45 fveq2d k=mvol*B=vol*m/kB
48 47 eleq1d k=mvol*Bvol*m/kB
49 46 48 anbi12d k=mBvol*Bm/kBvol*m/kB
50 44 49 rspc myzkyzBvol*Bm/kBvol*m/kB
51 37 50 mpan9 yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzm/kBvol*m/kB
52 51 simpld yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzm/kB
53 52 ralrimiva yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzm/kB
54 iunss myzm/kBmyzm/kB
55 53 54 sylibr yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzm/kB
56 iunss1 yyzmym/kBmyzm/kB
57 33 56 ax-mp mym/kBmyzm/kB
58 57 55 sstrid yFin¬zykyzBvol*Bvol*kyBkyvol*Bmym/kB
59 simpll yFin¬zykyzBvol*Bvol*kyBkyvol*ByFin
60 elun1 mymyz
61 51 simprd yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzvol*m/kB
62 60 61 sylan2 yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyvol*m/kB
63 59 62 fsumrecl yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyvol*m/kB
64 simprr yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*kyBkyvol*B
65 nfcv _mB
66 65 38 45 cbviun kyB=mym/kB
67 66 fveq2i vol*kyB=vol*mym/kB
68 nfcv _mvol*B
69 68 42 47 cbvsumi kyvol*B=myvol*m/kB
70 64 67 69 3brtr3g yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kBmyvol*m/kB
71 ovollecl mym/kBmyvol*m/kBvol*mym/kBmyvol*m/kBvol*mym/kB
72 58 63 70 71 syl3anc yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kB
73 ssun2 zyz
74 vsnid zz
75 73 74 sselii zyz
76 nfcsb1v _kz/kB
77 76 39 nfss kz/kB
78 41 76 nffv _kvol*z/kB
79 78 nfel1 kvol*z/kB
80 77 79 nfan kz/kBvol*z/kB
81 csbeq1a k=zB=z/kB
82 81 sseq1d k=zBz/kB
83 81 fveq2d k=zvol*B=vol*z/kB
84 83 eleq1d k=zvol*Bvol*z/kB
85 82 84 anbi12d k=zBvol*Bz/kBvol*z/kB
86 80 85 rspc zyzkyzBvol*Bz/kBvol*z/kB
87 75 37 86 mpsyl yFin¬zykyzBvol*Bvol*kyBkyvol*Bz/kBvol*z/kB
88 87 simprd yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*z/kB
89 72 88 readdcld yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kB+vol*z/kB
90 iunxun myzm/kB=mym/kBmzm/kB
91 vex zV
92 csbeq1 m=zm/kB=z/kB
93 91 92 iunxsn mzm/kB=z/kB
94 93 uneq2i mym/kBmzm/kB=mym/kBz/kB
95 90 94 eqtri myzm/kB=mym/kBz/kB
96 95 fveq2i vol*myzm/kB=vol*mym/kBz/kB
97 ovolun mym/kBvol*mym/kBz/kBvol*z/kBvol*mym/kBz/kBvol*mym/kB+vol*z/kB
98 58 72 87 97 syl21anc yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kBz/kBvol*mym/kB+vol*z/kB
99 96 98 eqbrtrid yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*myzm/kBvol*mym/kB+vol*z/kB
100 ovollecl myzm/kBvol*mym/kB+vol*z/kBvol*myzm/kBvol*mym/kB+vol*z/kBvol*myzm/kB
101 55 89 99 100 syl3anc yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*myzm/kB
102 snfi zFin
103 unfi yFinzFinyzFin
104 102 103 mpan2 yFinyzFin
105 104 ad2antrr yFin¬zykyzBvol*Bvol*kyBkyvol*ByzFin
106 105 61 fsumrecl yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzvol*m/kB
107 72 63 88 70 leadd1dd yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kB+vol*z/kBmyvol*m/kB+vol*z/kB
108 simplr yFin¬zykyzBvol*Bvol*kyBkyvol*B¬zy
109 disjsn yz=¬zy
110 108 109 sylibr yFin¬zykyzBvol*Bvol*kyBkyvol*Byz=
111 eqidd yFin¬zykyzBvol*Bvol*kyBkyvol*Byz=yz
112 61 recnd yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzvol*m/kB
113 110 111 105 112 fsumsplit yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzvol*m/kB=myvol*m/kB+mzvol*m/kB
114 88 recnd yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*z/kB
115 92 fveq2d m=zvol*m/kB=vol*z/kB
116 115 sumsn zVvol*z/kBmzvol*m/kB=vol*z/kB
117 91 114 116 sylancr yFin¬zykyzBvol*Bvol*kyBkyvol*Bmzvol*m/kB=vol*z/kB
118 117 oveq2d yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyvol*m/kB+mzvol*m/kB=myvol*m/kB+vol*z/kB
119 113 118 eqtrd yFin¬zykyzBvol*Bvol*kyBkyvol*Bmyzvol*m/kB=myvol*m/kB+vol*z/kB
120 107 119 breqtrrd yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*mym/kB+vol*z/kBmyzvol*m/kB
121 101 89 106 99 120 letrd yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*myzm/kBmyzvol*m/kB
122 65 38 45 cbviun kyzB=myzm/kB
123 122 fveq2i vol*kyzB=vol*myzm/kB
124 68 42 47 cbvsumi kyzvol*B=myzvol*m/kB
125 121 123 124 3brtr4g yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*kyzBkyzvol*B
126 125 exp32 yFin¬zykyzBvol*Bvol*kyBkyvol*Bvol*kyzBkyzvol*B
127 126 a2d yFin¬zykyzBvol*Bvol*kyBkyvol*BkyzBvol*Bvol*kyzBkyzvol*B
128 36 127 syl5 yFin¬zykyBvol*Bvol*kyBkyvol*BkyzBvol*Bvol*kyzBkyzvol*B
129 6 12 18 24 32 128 findcard2s AFinkABvol*Bvol*kABkAvol*B
130 129 imp AFinkABvol*Bvol*kABkAvol*B