Description: Lemma for itg1add . The function I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both i and j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 and itg1addlem5 . (Contributed by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | i1fadd.1 | |
|
i1fadd.2 | |
||
itg1add.3 | |
||
Assertion | itg1addlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fadd.1 | |
|
2 | i1fadd.2 | |
|
3 | itg1add.3 | |
|
4 | iffalse | |
|
5 | 4 | adantl | |
6 | i1fima | |
|
7 | 1 6 | syl | |
8 | i1fima | |
|
9 | 2 8 | syl | |
10 | inmbl | |
|
11 | 7 9 10 | syl2anc | |
12 | 11 | ad2antrr | |
13 | mblvol | |
|
14 | 12 13 | syl | |
15 | 5 14 | eqtrd | |
16 | neorian | |
|
17 | inss1 | |
|
18 | 7 | ad2antrr | |
19 | mblss | |
|
20 | 18 19 | syl | |
21 | mblvol | |
|
22 | 18 21 | syl | |
23 | 1 | ad2antrr | |
24 | simplrl | |
|
25 | simpr | |
|
26 | eldifsn | |
|
27 | 24 25 26 | sylanbrc | |
28 | i1fima2sn | |
|
29 | 23 27 28 | syl2anc | |
30 | 22 29 | eqeltrrd | |
31 | ovolsscl | |
|
32 | 17 20 30 31 | mp3an2i | |
33 | inss2 | |
|
34 | 2 | adantr | |
35 | 34 8 | syl | |
36 | 35 | adantr | |
37 | mblss | |
|
38 | 36 37 | syl | |
39 | mblvol | |
|
40 | 36 39 | syl | |
41 | 2 | ad2antrr | |
42 | simplrr | |
|
43 | simpr | |
|
44 | eldifsn | |
|
45 | 42 43 44 | sylanbrc | |
46 | i1fima2sn | |
|
47 | 41 45 46 | syl2anc | |
48 | 40 47 | eqeltrrd | |
49 | ovolsscl | |
|
50 | 33 38 48 49 | mp3an2i | |
51 | 32 50 | jaodan | |
52 | 16 51 | sylan2br | |
53 | 15 52 | eqeltrd | |
54 | 53 | ex | |
55 | iftrue | |
|
56 | 0re | |
|
57 | 55 56 | eqeltrdi | |
58 | 54 57 | pm2.61d2 | |
59 | 58 | ralrimivva | |
60 | 3 | fmpo | |
61 | 59 60 | sylib | |