Metamath Proof Explorer


Theorem itg1addlem2

Description: Lemma for itg1add . The function I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both i and j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 and itg1addlem5 . (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
itg1add.3 I=i,jifi=0j=00volF-1iG-1j
Assertion itg1addlem2 φI:2

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 itg1add.3 I=i,jifi=0j=00volF-1iG-1j
4 iffalse ¬i=0j=0ifi=0j=00volF-1iG-1j=volF-1iG-1j
5 4 adantl φij¬i=0j=0ifi=0j=00volF-1iG-1j=volF-1iG-1j
6 i1fima Fdom1F-1idomvol
7 1 6 syl φF-1idomvol
8 i1fima Gdom1G-1jdomvol
9 2 8 syl φG-1jdomvol
10 inmbl F-1idomvolG-1jdomvolF-1iG-1jdomvol
11 7 9 10 syl2anc φF-1iG-1jdomvol
12 11 ad2antrr φij¬i=0j=0F-1iG-1jdomvol
13 mblvol F-1iG-1jdomvolvolF-1iG-1j=vol*F-1iG-1j
14 12 13 syl φij¬i=0j=0volF-1iG-1j=vol*F-1iG-1j
15 5 14 eqtrd φij¬i=0j=0ifi=0j=00volF-1iG-1j=vol*F-1iG-1j
16 neorian i0j0¬i=0j=0
17 inss1 F-1iG-1jF-1i
18 7 ad2antrr φiji0F-1idomvol
19 mblss F-1idomvolF-1i
20 18 19 syl φiji0F-1i
21 mblvol F-1idomvolvolF-1i=vol*F-1i
22 18 21 syl φiji0volF-1i=vol*F-1i
23 1 ad2antrr φiji0Fdom1
24 simplrl φiji0i
25 simpr φiji0i0
26 eldifsn i0ii0
27 24 25 26 sylanbrc φiji0i0
28 i1fima2sn Fdom1i0volF-1i
29 23 27 28 syl2anc φiji0volF-1i
30 22 29 eqeltrrd φiji0vol*F-1i
31 ovolsscl F-1iG-1jF-1iF-1ivol*F-1ivol*F-1iG-1j
32 17 20 30 31 mp3an2i φiji0vol*F-1iG-1j
33 inss2 F-1iG-1jG-1j
34 2 adantr φijGdom1
35 34 8 syl φijG-1jdomvol
36 35 adantr φijj0G-1jdomvol
37 mblss G-1jdomvolG-1j
38 36 37 syl φijj0G-1j
39 mblvol G-1jdomvolvolG-1j=vol*G-1j
40 36 39 syl φijj0volG-1j=vol*G-1j
41 2 ad2antrr φijj0Gdom1
42 simplrr φijj0j
43 simpr φijj0j0
44 eldifsn j0jj0
45 42 43 44 sylanbrc φijj0j0
46 i1fima2sn Gdom1j0volG-1j
47 41 45 46 syl2anc φijj0volG-1j
48 40 47 eqeltrrd φijj0vol*G-1j
49 ovolsscl F-1iG-1jG-1jG-1jvol*G-1jvol*F-1iG-1j
50 33 38 48 49 mp3an2i φijj0vol*F-1iG-1j
51 32 50 jaodan φiji0j0vol*F-1iG-1j
52 16 51 sylan2br φij¬i=0j=0vol*F-1iG-1j
53 15 52 eqeltrd φij¬i=0j=0ifi=0j=00volF-1iG-1j
54 53 ex φij¬i=0j=0ifi=0j=00volF-1iG-1j
55 iftrue i=0j=0ifi=0j=00volF-1iG-1j=0
56 0re 0
57 55 56 eqeltrdi i=0j=0ifi=0j=00volF-1iG-1j
58 54 57 pm2.61d2 φijifi=0j=00volF-1iG-1j
59 58 ralrimivva φijifi=0j=00volF-1iG-1j
60 3 fmpo ijifi=0j=00volF-1iG-1jI:2
61 59 60 sylib φI:2