| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
|
| 2 |
|
i1fadd.2 |
|
| 3 |
|
i1ff |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
ffnd |
|
| 6 |
|
i1ff |
|
| 7 |
2 6
|
syl |
|
| 8 |
7
|
ffnd |
|
| 9 |
|
reex |
|
| 10 |
9
|
a1i |
|
| 11 |
|
inidm |
|
| 12 |
5 8 10 10 11
|
offn |
|
| 13 |
12
|
adantr |
|
| 14 |
|
fniniseg |
|
| 15 |
13 14
|
syl |
|
| 16 |
5
|
adantr |
|
| 17 |
8
|
adantr |
|
| 18 |
9
|
a1i |
|
| 19 |
|
eqidd |
|
| 20 |
|
eqidd |
|
| 21 |
16 17 18 18 11 19 20
|
ofval |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
22
|
pm5.32da |
|
| 24 |
8
|
ad2antrr |
|
| 25 |
|
simprl |
|
| 26 |
|
fnfvelrn |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
|
eldifsni |
|
| 29 |
28
|
ad2antlr |
|
| 30 |
|
simprr |
|
| 31 |
4
|
ad2antrr |
|
| 32 |
31 25
|
ffvelcdmd |
|
| 33 |
32
|
recnd |
|
| 34 |
33
|
mul01d |
|
| 35 |
29 30 34
|
3netr4d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
necon3i |
|
| 38 |
35 37
|
syl |
|
| 39 |
|
eldifsn |
|
| 40 |
27 38 39
|
sylanbrc |
|
| 41 |
7
|
ad2antrr |
|
| 42 |
41 25
|
ffvelcdmd |
|
| 43 |
42
|
recnd |
|
| 44 |
33 43 38
|
divcan4d |
|
| 45 |
30
|
oveq1d |
|
| 46 |
44 45
|
eqtr3d |
|
| 47 |
31
|
ffnd |
|
| 48 |
|
fniniseg |
|
| 49 |
47 48
|
syl |
|
| 50 |
25 46 49
|
mpbir2and |
|
| 51 |
|
eqidd |
|
| 52 |
|
fniniseg |
|
| 53 |
24 52
|
syl |
|
| 54 |
25 51 53
|
mpbir2and |
|
| 55 |
50 54
|
elind |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
sneqd |
|
| 58 |
57
|
imaeq2d |
|
| 59 |
|
sneq |
|
| 60 |
59
|
imaeq2d |
|
| 61 |
58 60
|
ineq12d |
|
| 62 |
61
|
eleq2d |
|
| 63 |
62
|
rspcev |
|
| 64 |
40 55 63
|
syl2anc |
|
| 65 |
64
|
ex |
|
| 66 |
|
fniniseg |
|
| 67 |
16 66
|
syl |
|
| 68 |
|
fniniseg |
|
| 69 |
17 68
|
syl |
|
| 70 |
67 69
|
anbi12d |
|
| 71 |
|
elin |
|
| 72 |
|
anandi |
|
| 73 |
70 71 72
|
3bitr4g |
|
| 74 |
73
|
adantr |
|
| 75 |
|
eldifi |
|
| 76 |
75
|
ad2antlr |
|
| 77 |
7
|
ad2antrr |
|
| 78 |
77
|
frnd |
|
| 79 |
|
simprl |
|
| 80 |
|
eldifsn |
|
| 81 |
79 80
|
sylib |
|
| 82 |
81
|
simpld |
|
| 83 |
78 82
|
sseldd |
|
| 84 |
83
|
recnd |
|
| 85 |
81
|
simprd |
|
| 86 |
76 84 85
|
divcan1d |
|
| 87 |
|
oveq12 |
|
| 88 |
87
|
eqeq1d |
|
| 89 |
86 88
|
syl5ibrcom |
|
| 90 |
89
|
anassrs |
|
| 91 |
90
|
imdistanda |
|
| 92 |
74 91
|
sylbid |
|
| 93 |
92
|
rexlimdva |
|
| 94 |
65 93
|
impbid |
|
| 95 |
15 23 94
|
3bitrd |
|
| 96 |
|
eliun |
|
| 97 |
95 96
|
bitr4di |
|
| 98 |
97
|
eqrdv |
|