Metamath Proof Explorer


Theorem ftc1anclem3

Description: Lemma for ftc1anc - the absolute value of the sum of a simple function and _i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018)

Ref Expression
Assertion ftc1anclem3 Fdom1Gdom1absF+f×i×fGdom1

Proof

Step Hyp Ref Expression
1 i1ff Fdom1F:
2 1 ffvelcdmda Fdom1xFx
3 i1ff Gdom1G:
4 3 ffvelcdmda Gdom1xGx
5 absreim FxGxFx+iGx=Fx2+Gx2
6 2 4 5 syl2an Fdom1xGdom1xFx+iGx=Fx2+Gx2
7 6 anandirs Fdom1Gdom1xFx+iGx=Fx2+Gx2
8 2 recnd Fdom1xFx
9 8 sqvald Fdom1xFx2=FxFx
10 4 recnd Gdom1xGx
11 10 sqvald Gdom1xGx2=GxGx
12 9 11 oveqan12d Fdom1xGdom1xFx2+Gx2=FxFx+GxGx
13 12 anandirs Fdom1Gdom1xFx2+Gx2=FxFx+GxGx
14 13 fveq2d Fdom1Gdom1xFx2+Gx2=FxFx+GxGx
15 7 14 eqtrd Fdom1Gdom1xFx+iGx=FxFx+GxGx
16 15 mpteq2dva Fdom1Gdom1xFx+iGx=xFxFx+GxGx
17 ax-icn i
18 mulcl iGxiGx
19 17 10 18 sylancr Gdom1xiGx
20 addcl FxiGxFx+iGx
21 8 19 20 syl2an Fdom1xGdom1xFx+iGx
22 21 anandirs Fdom1Gdom1xFx+iGx
23 reex V
24 23 a1i Fdom1Gdom1V
25 2 adantlr Fdom1Gdom1xFx
26 ovexd Fdom1Gdom1xiGxV
27 1 feqmptd Fdom1F=xFx
28 27 adantr Fdom1Gdom1F=xFx
29 23 a1i Gdom1V
30 17 a1i Gdom1xi
31 fconstmpt ×i=xi
32 31 a1i Gdom1×i=xi
33 3 feqmptd Gdom1G=xGx
34 29 30 4 32 33 offval2 Gdom1×i×fG=xiGx
35 34 adantl Fdom1Gdom1×i×fG=xiGx
36 24 25 26 28 35 offval2 Fdom1Gdom1F+f×i×fG=xFx+iGx
37 absf abs:
38 37 a1i Fdom1Gdom1abs:
39 38 feqmptd Fdom1Gdom1abs=yy
40 fveq2 y=Fx+iGxy=Fx+iGx
41 22 36 39 40 fmptco Fdom1Gdom1absF+f×i×fG=xFx+iGx
42 8 8 mulcld Fdom1xFxFx
43 10 10 mulcld Gdom1xGxGx
44 addcl FxFxGxGxFxFx+GxGx
45 42 43 44 syl2an Fdom1xGdom1xFxFx+GxGx
46 45 anandirs Fdom1Gdom1xFxFx+GxGx
47 42 adantlr Fdom1Gdom1xFxFx
48 43 adantll Fdom1Gdom1xGxGx
49 23 a1i Fdom1V
50 49 2 2 27 27 offval2 Fdom1F×fF=xFxFx
51 50 adantr Fdom1Gdom1F×fF=xFxFx
52 29 4 4 33 33 offval2 Gdom1G×fG=xGxGx
53 52 adantl Fdom1Gdom1G×fG=xGxGx
54 24 47 48 51 53 offval2 Fdom1Gdom1F×fF+fG×fG=xFxFx+GxGx
55 sqrtf :
56 55 a1i Fdom1Gdom1:
57 56 feqmptd Fdom1Gdom1=yy
58 fveq2 y=FxFx+GxGxy=FxFx+GxGx
59 46 54 57 58 fmptco Fdom1Gdom1F×fF+fG×fG=xFxFx+GxGx
60 16 41 59 3eqtr4d Fdom1Gdom1absF+f×i×fG=F×fF+fG×fG
61 elrege0 x0+∞x0x
62 resqrtcl x0xx
63 61 62 sylbi x0+∞x
64 63 adantl Fdom1Gdom1x0+∞x
65 id ::
66 65 feqmptd :=xx
67 55 66 ax-mp =xx
68 67 reseq1i 0+∞=xx0+∞
69 rge0ssre 0+∞
70 ax-resscn
71 69 70 sstri 0+∞
72 resmpt 0+∞xx0+∞=x0+∞x
73 71 72 ax-mp xx0+∞=x0+∞x
74 68 73 eqtri 0+∞=x0+∞x
75 64 74 fmptd Fdom1Gdom10+∞:0+∞
76 ge0addcl x0+∞y0+∞x+y0+∞
77 76 adantl Fdom1Gdom1x0+∞y0+∞x+y0+∞
78 oveq12 z=Fz=Fz×fz=F×fF
79 78 anidms z=Fz×fz=F×fF
80 79 feq1d z=Fz×fz:0+∞F×fF:0+∞
81 i1ff zdom1z:
82 81 ffvelcdmda zdom1xzx
83 82 82 remulcld zdom1xzxzx
84 82 msqge0d zdom1x0zxzx
85 elrege0 zxzx0+∞zxzx0zxzx
86 83 84 85 sylanbrc zdom1xzxzx0+∞
87 86 fmpttd zdom1xzxzx:0+∞
88 23 a1i zdom1V
89 81 feqmptd zdom1z=xzx
90 88 82 82 89 89 offval2 zdom1z×fz=xzxzx
91 90 feq1d zdom1z×fz:0+∞xzxzx:0+∞
92 87 91 mpbird zdom1z×fz:0+∞
93 80 92 vtoclga Fdom1F×fF:0+∞
94 93 adantr Fdom1Gdom1F×fF:0+∞
95 oveq12 z=Gz=Gz×fz=G×fG
96 95 anidms z=Gz×fz=G×fG
97 96 feq1d z=Gz×fz:0+∞G×fG:0+∞
98 97 92 vtoclga Gdom1G×fG:0+∞
99 98 adantl Fdom1Gdom1G×fG:0+∞
100 inidm =
101 77 94 99 24 24 100 off Fdom1Gdom1F×fF+fG×fG:0+∞
102 fco2 0+∞:0+∞F×fF+fG×fG:0+∞F×fF+fG×fG:
103 75 101 102 syl2anc Fdom1Gdom1F×fF+fG×fG:
104 rnco ranF×fF+fG×fG=ranranF×fF+fG×fG
105 ffn :Fn
106 55 105 ax-mp Fn
107 readdcl xyx+y
108 107 adantl Fdom1Gdom1xyx+y
109 remulcl xyxy
110 109 adantl Fdom1xyxy
111 110 1 1 49 49 100 off Fdom1F×fF:
112 111 adantr Fdom1Gdom1F×fF:
113 109 adantl Gdom1xyxy
114 113 3 3 29 29 100 off Gdom1G×fG:
115 114 adantl Fdom1Gdom1G×fG:
116 108 112 115 24 24 100 off Fdom1Gdom1F×fF+fG×fG:
117 116 frnd Fdom1Gdom1ranF×fF+fG×fG
118 117 70 sstrdi Fdom1Gdom1ranF×fF+fG×fG
119 fnssres FnranF×fF+fG×fGranF×fF+fG×fGFnranF×fF+fG×fG
120 106 118 119 sylancr Fdom1Gdom1ranF×fF+fG×fGFnranF×fF+fG×fG
121 id Fdom1Fdom1
122 121 121 i1fmul Fdom1F×fFdom1
123 122 adantr Fdom1Gdom1F×fFdom1
124 id Gdom1Gdom1
125 124 124 i1fmul Gdom1G×fGdom1
126 125 adantl Fdom1Gdom1G×fGdom1
127 123 126 i1fadd Fdom1Gdom1F×fF+fG×fGdom1
128 i1frn F×fF+fG×fGdom1ranF×fF+fG×fGFin
129 127 128 syl Fdom1Gdom1ranF×fF+fG×fGFin
130 fnfi ranF×fF+fG×fGFnranF×fF+fG×fGranF×fF+fG×fGFinranF×fF+fG×fGFin
131 120 129 130 syl2anc Fdom1Gdom1ranF×fF+fG×fGFin
132 rnfi ranF×fF+fG×fGFinranranF×fF+fG×fGFin
133 131 132 syl Fdom1Gdom1ranranF×fF+fG×fGFin
134 104 133 eqeltrid Fdom1Gdom1ranF×fF+fG×fGFin
135 cnvco F×fF+fG×fG-1=F×fF+fG×fG-1-1
136 135 imaeq1i F×fF+fG×fG-1x=F×fF+fG×fG-1-1x
137 imaco F×fF+fG×fG-1-1x=F×fF+fG×fG-1-1x
138 136 137 eqtri F×fF+fG×fG-1x=F×fF+fG×fG-1-1x
139 i1fima F×fF+fG×fGdom1F×fF+fG×fG-1-1xdomvol
140 127 139 syl Fdom1Gdom1F×fF+fG×fG-1-1xdomvol
141 138 140 eqeltrid Fdom1Gdom1F×fF+fG×fG-1xdomvol
142 141 adantr Fdom1Gdom1xranF×fF+fG×fG0F×fF+fG×fG-1xdomvol
143 138 fveq2i volF×fF+fG×fG-1x=volF×fF+fG×fG-1-1x
144 eldifsni xranF×fF+fG×fG0x0
145 c0ex 0V
146 145 elsn 0x0=x
147 eqcom 0=xx=0
148 146 147 bitri 0xx=0
149 148 necon3bbii ¬0xx0
150 sqrt0 0=0
151 150 eleq1i 0x0x
152 149 151 xchnxbir ¬0xx0
153 144 152 sylibr xranF×fF+fG×fG0¬0x
154 153 olcd xranF×fF+fG×fG0¬0¬0x
155 ianor ¬00x¬0¬0x
156 elpreima Fn0-1x00x
157 55 105 156 mp2b 0-1x00x
158 155 157 xchnxbir ¬0-1x¬0¬0x
159 154 158 sylibr xranF×fF+fG×fG0¬0-1x
160 i1fima2 F×fF+fG×fGdom1¬0-1xvolF×fF+fG×fG-1-1x
161 127 159 160 syl2an Fdom1Gdom1xranF×fF+fG×fG0volF×fF+fG×fG-1-1x
162 143 161 eqeltrid Fdom1Gdom1xranF×fF+fG×fG0volF×fF+fG×fG-1x
163 103 134 142 162 i1fd Fdom1Gdom1F×fF+fG×fGdom1
164 60 163 eqeltrd Fdom1Gdom1absF+f×i×fGdom1